[5571] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16453] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5571] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
[6740] | 26 | using HeuristicLab.Data;
|
---|
[5571] | 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[6740] | 28 | using HeuristicLab.Parameters;
|
---|
[16559] | 29 | using HEAL.Attic;
|
---|
[5571] | 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
[16462] | 32 | [StorableType("FB94F333-B32A-44FB-A561-CBDE76693D20")]
|
---|
[5571] | 33 | [Item("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.")]
|
---|
[13248] | 34 | public class SymbolicDataAnalysisExpressionTreeInterpreter : ParameterizedNamedItem,
|
---|
| 35 | ISymbolicDataAnalysisExpressionTreeInterpreter {
|
---|
[5749] | 36 | private const string CheckExpressionsWithIntervalArithmeticParameterName = "CheckExpressionsWithIntervalArithmetic";
|
---|
[13248] | 37 | private const string CheckExpressionsWithIntervalArithmeticParameterDescription = "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.";
|
---|
[7615] | 38 | private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions";
|
---|
[5571] | 39 |
|
---|
[13248] | 40 | public override bool CanChangeName {
|
---|
| 41 | get { return false; }
|
---|
| 42 | }
|
---|
[5571] | 43 |
|
---|
[13248] | 44 | public override bool CanChangeDescription {
|
---|
| 45 | get { return false; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
[5749] | 48 | #region parameter properties
|
---|
[13248] | 49 | public IFixedValueParameter<BoolValue> CheckExpressionsWithIntervalArithmeticParameter {
|
---|
| 50 | get { return (IFixedValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName]; }
|
---|
[5749] | 51 | }
|
---|
[7615] | 52 |
|
---|
[13248] | 53 | public IFixedValueParameter<IntValue> EvaluatedSolutionsParameter {
|
---|
| 54 | get { return (IFixedValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName]; }
|
---|
[7615] | 55 | }
|
---|
[5749] | 56 | #endregion
|
---|
| 57 |
|
---|
| 58 | #region properties
|
---|
[13248] | 59 | public bool CheckExpressionsWithIntervalArithmetic {
|
---|
| 60 | get { return CheckExpressionsWithIntervalArithmeticParameter.Value.Value; }
|
---|
| 61 | set { CheckExpressionsWithIntervalArithmeticParameter.Value.Value = value; }
|
---|
[5749] | 62 | }
|
---|
[7615] | 63 |
|
---|
[13248] | 64 | public int EvaluatedSolutions {
|
---|
| 65 | get { return EvaluatedSolutionsParameter.Value.Value; }
|
---|
| 66 | set { EvaluatedSolutionsParameter.Value.Value = value; }
|
---|
[7615] | 67 | }
|
---|
[5749] | 68 | #endregion
|
---|
| 69 |
|
---|
[5571] | 70 | [StorableConstructor]
|
---|
[16462] | 71 | protected SymbolicDataAnalysisExpressionTreeInterpreter(StorableConstructorFlag _) : base(_) { }
|
---|
[13248] | 72 |
|
---|
| 73 | protected SymbolicDataAnalysisExpressionTreeInterpreter(SymbolicDataAnalysisExpressionTreeInterpreter original,
|
---|
[13251] | 74 | Cloner cloner)
|
---|
| 75 | : base(original, cloner) { }
|
---|
[13248] | 76 |
|
---|
[5571] | 77 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 78 | return new SymbolicDataAnalysisExpressionTreeInterpreter(this, cloner);
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | public SymbolicDataAnalysisExpressionTreeInterpreter()
|
---|
[5749] | 82 | : base("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.") {
|
---|
[13248] | 83 | Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
|
---|
| 84 | Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
|
---|
[5571] | 85 | }
|
---|
| 86 |
|
---|
[8436] | 87 | protected SymbolicDataAnalysisExpressionTreeInterpreter(string name, string description)
|
---|
| 88 | : base(name, description) {
|
---|
[13248] | 89 | Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
|
---|
| 90 | Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
|
---|
[8436] | 91 | }
|
---|
| 92 |
|
---|
[7615] | 93 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 94 | private void AfterDeserialization() {
|
---|
[13248] | 95 | var evaluatedSolutions = new IntValue(0);
|
---|
| 96 | var checkExpressionsWithIntervalArithmetic = new BoolValue(false);
|
---|
| 97 | if (Parameters.ContainsKey(EvaluatedSolutionsParameterName)) {
|
---|
| 98 | var evaluatedSolutionsParameter = (IValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName];
|
---|
| 99 | evaluatedSolutions = evaluatedSolutionsParameter.Value;
|
---|
| 100 | Parameters.Remove(EvaluatedSolutionsParameterName);
|
---|
| 101 | }
|
---|
| 102 | Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", evaluatedSolutions));
|
---|
| 103 | if (Parameters.ContainsKey(CheckExpressionsWithIntervalArithmeticParameterName)) {
|
---|
| 104 | var checkExpressionsWithIntervalArithmeticParameter = (IValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName];
|
---|
| 105 | Parameters.Remove(CheckExpressionsWithIntervalArithmeticParameterName);
|
---|
| 106 | checkExpressionsWithIntervalArithmetic = checkExpressionsWithIntervalArithmeticParameter.Value;
|
---|
| 107 | }
|
---|
| 108 | Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, CheckExpressionsWithIntervalArithmeticParameterDescription, checkExpressionsWithIntervalArithmetic));
|
---|
[7615] | 109 | }
|
---|
| 110 |
|
---|
| 111 | #region IStatefulItem
|
---|
| 112 | public void InitializeState() {
|
---|
[13248] | 113 | EvaluatedSolutions = 0;
|
---|
[7615] | 114 | }
|
---|
| 115 |
|
---|
[13248] | 116 | public void ClearState() { }
|
---|
[7615] | 117 | #endregion
|
---|
| 118 |
|
---|
[13251] | 119 | private readonly object syncRoot = new object();
|
---|
[13248] | 120 | public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset,
|
---|
| 121 | IEnumerable<int> rows) {
|
---|
| 122 | if (CheckExpressionsWithIntervalArithmetic) {
|
---|
[8436] | 123 | throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter.");
|
---|
[13248] | 124 | }
|
---|
[7120] | 125 |
|
---|
[13251] | 126 | lock (syncRoot) {
|
---|
[13248] | 127 | EvaluatedSolutions++; // increment the evaluated solutions counter
|
---|
[9004] | 128 | }
|
---|
[8436] | 129 | var state = PrepareInterpreterState(tree, dataset);
|
---|
| 130 |
|
---|
| 131 | foreach (var rowEnum in rows) {
|
---|
| 132 | int row = rowEnum;
|
---|
| 133 | yield return Evaluate(dataset, ref row, state);
|
---|
| 134 | state.Reset();
|
---|
| 135 | }
|
---|
[7154] | 136 | }
|
---|
| 137 |
|
---|
[12509] | 138 | private static InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, IDataset dataset) {
|
---|
[8436] | 139 | Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode);
|
---|
[5987] | 140 | int necessaryArgStackSize = 0;
|
---|
[8436] | 141 | foreach (Instruction instr in code) {
|
---|
[6860] | 142 | if (instr.opCode == OpCodes.Variable) {
|
---|
[8436] | 143 | var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
|
---|
[9828] | 144 | instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
|
---|
[14826] | 145 | } else if (instr.opCode == OpCodes.FactorVariable) {
|
---|
| 146 | var factorTreeNode = instr.dynamicNode as FactorVariableTreeNode;
|
---|
| 147 | instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName);
|
---|
| 148 | } else if (instr.opCode == OpCodes.BinaryFactorVariable) {
|
---|
| 149 | var factorTreeNode = instr.dynamicNode as BinaryFactorVariableTreeNode;
|
---|
| 150 | instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName);
|
---|
[5571] | 151 | } else if (instr.opCode == OpCodes.LagVariable) {
|
---|
[8436] | 152 | var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
|
---|
[9828] | 153 | instr.data = dataset.GetReadOnlyDoubleValues(laggedVariableTreeNode.VariableName);
|
---|
[6860] | 154 | } else if (instr.opCode == OpCodes.VariableCondition) {
|
---|
[8436] | 155 | var variableConditionTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
|
---|
[9828] | 156 | instr.data = dataset.GetReadOnlyDoubleValues(variableConditionTreeNode.VariableName);
|
---|
[5987] | 157 | } else if (instr.opCode == OpCodes.Call) {
|
---|
| 158 | necessaryArgStackSize += instr.nArguments + 1;
|
---|
[5571] | 159 | }
|
---|
| 160 | }
|
---|
[8436] | 161 | return new InterpreterState(code, necessaryArgStackSize);
|
---|
| 162 | }
|
---|
[5571] | 163 |
|
---|
[12509] | 164 | public virtual double Evaluate(IDataset dataset, ref int row, InterpreterState state) {
|
---|
[5571] | 165 | Instruction currentInstr = state.NextInstruction();
|
---|
| 166 | switch (currentInstr.opCode) {
|
---|
| 167 | case OpCodes.Add: {
|
---|
[8436] | 168 | double s = Evaluate(dataset, ref row, state);
|
---|
[5571] | 169 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 170 | s += Evaluate(dataset, ref row, state);
|
---|
[5571] | 171 | }
|
---|
| 172 | return s;
|
---|
| 173 | }
|
---|
| 174 | case OpCodes.Sub: {
|
---|
[8436] | 175 | double s = Evaluate(dataset, ref row, state);
|
---|
[5571] | 176 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 177 | s -= Evaluate(dataset, ref row, state);
|
---|
[5571] | 178 | }
|
---|
[13248] | 179 | if (currentInstr.nArguments == 1) { s = -s; }
|
---|
[5571] | 180 | return s;
|
---|
| 181 | }
|
---|
| 182 | case OpCodes.Mul: {
|
---|
[8436] | 183 | double p = Evaluate(dataset, ref row, state);
|
---|
[5571] | 184 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 185 | p *= Evaluate(dataset, ref row, state);
|
---|
[5571] | 186 | }
|
---|
| 187 | return p;
|
---|
| 188 | }
|
---|
| 189 | case OpCodes.Div: {
|
---|
[8436] | 190 | double p = Evaluate(dataset, ref row, state);
|
---|
[5571] | 191 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 192 | p /= Evaluate(dataset, ref row, state);
|
---|
[5571] | 193 | }
|
---|
[13248] | 194 | if (currentInstr.nArguments == 1) { p = 1.0 / p; }
|
---|
[5571] | 195 | return p;
|
---|
| 196 | }
|
---|
| 197 | case OpCodes.Average: {
|
---|
[8436] | 198 | double sum = Evaluate(dataset, ref row, state);
|
---|
[5571] | 199 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 200 | sum += Evaluate(dataset, ref row, state);
|
---|
[5571] | 201 | }
|
---|
| 202 | return sum / currentInstr.nArguments;
|
---|
| 203 | }
|
---|
[16356] | 204 | case OpCodes.Absolute: {
|
---|
| 205 | return Math.Abs(Evaluate(dataset, ref row, state));
|
---|
| 206 | }
|
---|
[5571] | 207 | case OpCodes.Cos: {
|
---|
[8436] | 208 | return Math.Cos(Evaluate(dataset, ref row, state));
|
---|
[5571] | 209 | }
|
---|
| 210 | case OpCodes.Sin: {
|
---|
[8436] | 211 | return Math.Sin(Evaluate(dataset, ref row, state));
|
---|
[5571] | 212 | }
|
---|
| 213 | case OpCodes.Tan: {
|
---|
[8436] | 214 | return Math.Tan(Evaluate(dataset, ref row, state));
|
---|
[5571] | 215 | }
|
---|
[7842] | 216 | case OpCodes.Square: {
|
---|
[8436] | 217 | return Math.Pow(Evaluate(dataset, ref row, state), 2);
|
---|
[7842] | 218 | }
|
---|
[16356] | 219 | case OpCodes.Cube: {
|
---|
| 220 | return Math.Pow(Evaluate(dataset, ref row, state), 3);
|
---|
| 221 | }
|
---|
[5571] | 222 | case OpCodes.Power: {
|
---|
[8436] | 223 | double x = Evaluate(dataset, ref row, state);
|
---|
| 224 | double y = Math.Round(Evaluate(dataset, ref row, state));
|
---|
[5571] | 225 | return Math.Pow(x, y);
|
---|
| 226 | }
|
---|
[7842] | 227 | case OpCodes.SquareRoot: {
|
---|
[8436] | 228 | return Math.Sqrt(Evaluate(dataset, ref row, state));
|
---|
[7842] | 229 | }
|
---|
[16356] | 230 | case OpCodes.CubeRoot: {
|
---|
| 231 | return Math.Pow(Evaluate(dataset, ref row, state), 1.0 / 3.0);
|
---|
| 232 | }
|
---|
[5571] | 233 | case OpCodes.Root: {
|
---|
[8436] | 234 | double x = Evaluate(dataset, ref row, state);
|
---|
| 235 | double y = Math.Round(Evaluate(dataset, ref row, state));
|
---|
[5571] | 236 | return Math.Pow(x, 1 / y);
|
---|
| 237 | }
|
---|
| 238 | case OpCodes.Exp: {
|
---|
[8436] | 239 | return Math.Exp(Evaluate(dataset, ref row, state));
|
---|
[5571] | 240 | }
|
---|
| 241 | case OpCodes.Log: {
|
---|
[8436] | 242 | return Math.Log(Evaluate(dataset, ref row, state));
|
---|
[5571] | 243 | }
|
---|
[7842] | 244 | case OpCodes.Gamma: {
|
---|
[8436] | 245 | var x = Evaluate(dataset, ref row, state);
|
---|
[13248] | 246 | if (double.IsNaN(x)) { return double.NaN; } else { return alglib.gammafunction(x); }
|
---|
[7842] | 247 | }
|
---|
| 248 | case OpCodes.Psi: {
|
---|
[8436] | 249 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 250 | if (double.IsNaN(x)) return double.NaN;
|
---|
[8430] | 251 | else if (x <= 0 && (Math.Floor(x) - x).IsAlmost(0)) return double.NaN;
|
---|
[7842] | 252 | return alglib.psi(x);
|
---|
| 253 | }
|
---|
| 254 | case OpCodes.Dawson: {
|
---|
[8436] | 255 | var x = Evaluate(dataset, ref row, state);
|
---|
[13248] | 256 | if (double.IsNaN(x)) { return double.NaN; }
|
---|
[7842] | 257 | return alglib.dawsonintegral(x);
|
---|
| 258 | }
|
---|
| 259 | case OpCodes.ExponentialIntegralEi: {
|
---|
[8436] | 260 | var x = Evaluate(dataset, ref row, state);
|
---|
[13248] | 261 | if (double.IsNaN(x)) { return double.NaN; }
|
---|
[7842] | 262 | return alglib.exponentialintegralei(x);
|
---|
| 263 | }
|
---|
| 264 | case OpCodes.SineIntegral: {
|
---|
| 265 | double si, ci;
|
---|
[8436] | 266 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 267 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 268 | else {
|
---|
| 269 | alglib.sinecosineintegrals(x, out si, out ci);
|
---|
| 270 | return si;
|
---|
| 271 | }
|
---|
| 272 | }
|
---|
| 273 | case OpCodes.CosineIntegral: {
|
---|
| 274 | double si, ci;
|
---|
[8436] | 275 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 276 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 277 | else {
|
---|
| 278 | alglib.sinecosineintegrals(x, out si, out ci);
|
---|
| 279 | return ci;
|
---|
| 280 | }
|
---|
| 281 | }
|
---|
| 282 | case OpCodes.HyperbolicSineIntegral: {
|
---|
| 283 | double shi, chi;
|
---|
[8436] | 284 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 285 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 286 | else {
|
---|
| 287 | alglib.hyperbolicsinecosineintegrals(x, out shi, out chi);
|
---|
| 288 | return shi;
|
---|
| 289 | }
|
---|
| 290 | }
|
---|
| 291 | case OpCodes.HyperbolicCosineIntegral: {
|
---|
| 292 | double shi, chi;
|
---|
[8436] | 293 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 294 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 295 | else {
|
---|
| 296 | alglib.hyperbolicsinecosineintegrals(x, out shi, out chi);
|
---|
| 297 | return chi;
|
---|
| 298 | }
|
---|
| 299 | }
|
---|
| 300 | case OpCodes.FresnelCosineIntegral: {
|
---|
| 301 | double c = 0, s = 0;
|
---|
[8436] | 302 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 303 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 304 | else {
|
---|
| 305 | alglib.fresnelintegral(x, ref c, ref s);
|
---|
| 306 | return c;
|
---|
| 307 | }
|
---|
| 308 | }
|
---|
| 309 | case OpCodes.FresnelSineIntegral: {
|
---|
| 310 | double c = 0, s = 0;
|
---|
[8436] | 311 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 312 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 313 | else {
|
---|
| 314 | alglib.fresnelintegral(x, ref c, ref s);
|
---|
| 315 | return s;
|
---|
| 316 | }
|
---|
| 317 | }
|
---|
| 318 | case OpCodes.AiryA: {
|
---|
| 319 | double ai, aip, bi, bip;
|
---|
[8436] | 320 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 321 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 322 | else {
|
---|
| 323 | alglib.airy(x, out ai, out aip, out bi, out bip);
|
---|
| 324 | return ai;
|
---|
| 325 | }
|
---|
| 326 | }
|
---|
| 327 | case OpCodes.AiryB: {
|
---|
| 328 | double ai, aip, bi, bip;
|
---|
[8436] | 329 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 330 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 331 | else {
|
---|
| 332 | alglib.airy(x, out ai, out aip, out bi, out bip);
|
---|
| 333 | return bi;
|
---|
| 334 | }
|
---|
| 335 | }
|
---|
| 336 | case OpCodes.Norm: {
|
---|
[8436] | 337 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 338 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 339 | else return alglib.normaldistribution(x);
|
---|
| 340 | }
|
---|
| 341 | case OpCodes.Erf: {
|
---|
[8436] | 342 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 343 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 344 | else return alglib.errorfunction(x);
|
---|
| 345 | }
|
---|
| 346 | case OpCodes.Bessel: {
|
---|
[8436] | 347 | var x = Evaluate(dataset, ref row, state);
|
---|
[7842] | 348 | if (double.IsNaN(x)) return double.NaN;
|
---|
| 349 | else return alglib.besseli0(x);
|
---|
| 350 | }
|
---|
[16356] | 351 |
|
---|
[16360] | 352 | case OpCodes.AnalyticQuotient: {
|
---|
[16356] | 353 | var x1 = Evaluate(dataset, ref row, state);
|
---|
| 354 | var x2 = Evaluate(dataset, ref row, state);
|
---|
| 355 | return x1 / Math.Pow(1 + x2 * x2, 0.5);
|
---|
| 356 | }
|
---|
[5571] | 357 | case OpCodes.IfThenElse: {
|
---|
[8436] | 358 | double condition = Evaluate(dataset, ref row, state);
|
---|
[5571] | 359 | double result;
|
---|
| 360 | if (condition > 0.0) {
|
---|
[8436] | 361 | result = Evaluate(dataset, ref row, state); state.SkipInstructions();
|
---|
[5571] | 362 | } else {
|
---|
[8436] | 363 | state.SkipInstructions(); result = Evaluate(dataset, ref row, state);
|
---|
[5571] | 364 | }
|
---|
| 365 | return result;
|
---|
| 366 | }
|
---|
| 367 | case OpCodes.AND: {
|
---|
[8436] | 368 | double result = Evaluate(dataset, ref row, state);
|
---|
[5571] | 369 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 370 | if (result > 0.0) result = Evaluate(dataset, ref row, state);
|
---|
[5571] | 371 | else {
|
---|
[8436] | 372 | state.SkipInstructions();
|
---|
[5571] | 373 | }
|
---|
| 374 | }
|
---|
[6732] | 375 | return result > 0.0 ? 1.0 : -1.0;
|
---|
[5571] | 376 | }
|
---|
| 377 | case OpCodes.OR: {
|
---|
[8436] | 378 | double result = Evaluate(dataset, ref row, state);
|
---|
[5571] | 379 | for (int i = 1; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 380 | if (result <= 0.0) result = Evaluate(dataset, ref row, state);
|
---|
[5571] | 381 | else {
|
---|
[8436] | 382 | state.SkipInstructions();
|
---|
[5571] | 383 | }
|
---|
| 384 | }
|
---|
| 385 | return result > 0.0 ? 1.0 : -1.0;
|
---|
| 386 | }
|
---|
| 387 | case OpCodes.NOT: {
|
---|
[8436] | 388 | return Evaluate(dataset, ref row, state) > 0.0 ? -1.0 : 1.0;
|
---|
[5571] | 389 | }
|
---|
[10774] | 390 | case OpCodes.XOR: {
|
---|
[10788] | 391 | //mkommend: XOR on multiple inputs is defined as true if the number of positive signals is odd
|
---|
| 392 | // this is equal to a consecutive execution of binary XOR operations.
|
---|
| 393 | int positiveSignals = 0;
|
---|
| 394 | for (int i = 0; i < currentInstr.nArguments; i++) {
|
---|
[13248] | 395 | if (Evaluate(dataset, ref row, state) > 0.0) { positiveSignals++; }
|
---|
[10774] | 396 | }
|
---|
[10788] | 397 | return positiveSignals % 2 != 0 ? 1.0 : -1.0;
|
---|
[10774] | 398 | }
|
---|
[5571] | 399 | case OpCodes.GT: {
|
---|
[8436] | 400 | double x = Evaluate(dataset, ref row, state);
|
---|
| 401 | double y = Evaluate(dataset, ref row, state);
|
---|
[13248] | 402 | if (x > y) { return 1.0; } else { return -1.0; }
|
---|
[5571] | 403 | }
|
---|
| 404 | case OpCodes.LT: {
|
---|
[8436] | 405 | double x = Evaluate(dataset, ref row, state);
|
---|
| 406 | double y = Evaluate(dataset, ref row, state);
|
---|
[13248] | 407 | if (x < y) { return 1.0; } else { return -1.0; }
|
---|
[5571] | 408 | }
|
---|
| 409 | case OpCodes.TimeLag: {
|
---|
| 410 | var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
|
---|
| 411 | row += timeLagTreeNode.Lag;
|
---|
[8436] | 412 | double result = Evaluate(dataset, ref row, state);
|
---|
[5571] | 413 | row -= timeLagTreeNode.Lag;
|
---|
| 414 | return result;
|
---|
| 415 | }
|
---|
| 416 | case OpCodes.Integral: {
|
---|
| 417 | int savedPc = state.ProgramCounter;
|
---|
| 418 | var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
|
---|
| 419 | double sum = 0.0;
|
---|
| 420 | for (int i = 0; i < Math.Abs(timeLagTreeNode.Lag); i++) {
|
---|
| 421 | row += Math.Sign(timeLagTreeNode.Lag);
|
---|
[8436] | 422 | sum += Evaluate(dataset, ref row, state);
|
---|
[5571] | 423 | state.ProgramCounter = savedPc;
|
---|
| 424 | }
|
---|
| 425 | row -= timeLagTreeNode.Lag;
|
---|
[8436] | 426 | sum += Evaluate(dataset, ref row, state);
|
---|
[5571] | 427 | return sum;
|
---|
| 428 | }
|
---|
| 429 |
|
---|
| 430 | //mkommend: derivate calculation taken from:
|
---|
| 431 | //http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
|
---|
| 432 | //one sided smooth differentiatior, N = 4
|
---|
| 433 | // y' = 1/8h (f_i + 2f_i-1, -2 f_i-3 - f_i-4)
|
---|
| 434 | case OpCodes.Derivative: {
|
---|
| 435 | int savedPc = state.ProgramCounter;
|
---|
[8436] | 436 | double f_0 = Evaluate(dataset, ref row, state); row--;
|
---|
[5571] | 437 | state.ProgramCounter = savedPc;
|
---|
[8436] | 438 | double f_1 = Evaluate(dataset, ref row, state); row -= 2;
|
---|
[5571] | 439 | state.ProgramCounter = savedPc;
|
---|
[8436] | 440 | double f_3 = Evaluate(dataset, ref row, state); row--;
|
---|
[5571] | 441 | state.ProgramCounter = savedPc;
|
---|
[8436] | 442 | double f_4 = Evaluate(dataset, ref row, state);
|
---|
[5571] | 443 | row += 4;
|
---|
| 444 |
|
---|
| 445 | return (f_0 + 2 * f_1 - 2 * f_3 - f_4) / 8; // h = 1
|
---|
| 446 | }
|
---|
| 447 | case OpCodes.Call: {
|
---|
| 448 | // evaluate sub-trees
|
---|
| 449 | double[] argValues = new double[currentInstr.nArguments];
|
---|
| 450 | for (int i = 0; i < currentInstr.nArguments; i++) {
|
---|
[8436] | 451 | argValues[i] = Evaluate(dataset, ref row, state);
|
---|
[5571] | 452 | }
|
---|
| 453 | // push on argument values on stack
|
---|
| 454 | state.CreateStackFrame(argValues);
|
---|
| 455 |
|
---|
| 456 | // save the pc
|
---|
| 457 | int savedPc = state.ProgramCounter;
|
---|
| 458 | // set pc to start of function
|
---|
[9828] | 459 | state.ProgramCounter = (ushort)currentInstr.data;
|
---|
[5571] | 460 | // evaluate the function
|
---|
[8436] | 461 | double v = Evaluate(dataset, ref row, state);
|
---|
[5571] | 462 |
|
---|
| 463 | // delete the stack frame
|
---|
| 464 | state.RemoveStackFrame();
|
---|
| 465 |
|
---|
| 466 | // restore the pc => evaluation will continue at point after my subtrees
|
---|
| 467 | state.ProgramCounter = savedPc;
|
---|
| 468 | return v;
|
---|
| 469 | }
|
---|
| 470 | case OpCodes.Arg: {
|
---|
[9828] | 471 | return state.GetStackFrameValue((ushort)currentInstr.data);
|
---|
[5571] | 472 | }
|
---|
| 473 | case OpCodes.Variable: {
|
---|
[8486] | 474 | if (row < 0 || row >= dataset.Rows) return double.NaN;
|
---|
[6740] | 475 | var variableTreeNode = (VariableTreeNode)currentInstr.dynamicNode;
|
---|
[9828] | 476 | return ((IList<double>)currentInstr.data)[row] * variableTreeNode.Weight;
|
---|
[5571] | 477 | }
|
---|
[14826] | 478 | case OpCodes.BinaryFactorVariable: {
|
---|
| 479 | if (row < 0 || row >= dataset.Rows) return double.NaN;
|
---|
| 480 | var factorVarTreeNode = currentInstr.dynamicNode as BinaryFactorVariableTreeNode;
|
---|
| 481 | return ((IList<string>)currentInstr.data)[row] == factorVarTreeNode.VariableValue ? factorVarTreeNode.Weight : 0;
|
---|
| 482 | }
|
---|
| 483 | case OpCodes.FactorVariable: {
|
---|
| 484 | if (row < 0 || row >= dataset.Rows) return double.NaN;
|
---|
| 485 | var factorVarTreeNode = currentInstr.dynamicNode as FactorVariableTreeNode;
|
---|
| 486 | return factorVarTreeNode.GetValue(((IList<string>)currentInstr.data)[row]);
|
---|
| 487 | }
|
---|
[5571] | 488 | case OpCodes.LagVariable: {
|
---|
[6740] | 489 | var laggedVariableTreeNode = (LaggedVariableTreeNode)currentInstr.dynamicNode;
|
---|
[5571] | 490 | int actualRow = row + laggedVariableTreeNode.Lag;
|
---|
[13248] | 491 | if (actualRow < 0 || actualRow >= dataset.Rows) { return double.NaN; }
|
---|
[9828] | 492 | return ((IList<double>)currentInstr.data)[actualRow] * laggedVariableTreeNode.Weight;
|
---|
[5571] | 493 | }
|
---|
| 494 | case OpCodes.Constant: {
|
---|
[8436] | 495 | var constTreeNode = (ConstantTreeNode)currentInstr.dynamicNode;
|
---|
[5897] | 496 | return constTreeNode.Value;
|
---|
[5571] | 497 | }
|
---|
| 498 |
|
---|
| 499 | //mkommend: this symbol uses the logistic function f(x) = 1 / (1 + e^(-alpha * x) )
|
---|
| 500 | //to determine the relative amounts of the true and false branch see http://en.wikipedia.org/wiki/Logistic_function
|
---|
| 501 | case OpCodes.VariableCondition: {
|
---|
[8486] | 502 | if (row < 0 || row >= dataset.Rows) return double.NaN;
|
---|
[5571] | 503 | var variableConditionTreeNode = (VariableConditionTreeNode)currentInstr.dynamicNode;
|
---|
[14345] | 504 | if (!variableConditionTreeNode.Symbol.IgnoreSlope) {
|
---|
| 505 | double variableValue = ((IList<double>)currentInstr.data)[row];
|
---|
| 506 | double x = variableValue - variableConditionTreeNode.Threshold;
|
---|
| 507 | double p = 1 / (1 + Math.Exp(-variableConditionTreeNode.Slope * x));
|
---|
[5571] | 508 |
|
---|
[14345] | 509 | double trueBranch = Evaluate(dataset, ref row, state);
|
---|
| 510 | double falseBranch = Evaluate(dataset, ref row, state);
|
---|
[5571] | 511 |
|
---|
[14345] | 512 | return trueBranch * p + falseBranch * (1 - p);
|
---|
| 513 | } else {
|
---|
| 514 | // strict threshold
|
---|
| 515 | double variableValue = ((IList<double>)currentInstr.data)[row];
|
---|
| 516 | if (variableValue <= variableConditionTreeNode.Threshold) {
|
---|
| 517 | var left = Evaluate(dataset, ref row, state);
|
---|
| 518 | state.SkipInstructions();
|
---|
| 519 | return left;
|
---|
| 520 | } else {
|
---|
| 521 | state.SkipInstructions();
|
---|
| 522 | return Evaluate(dataset, ref row, state);
|
---|
| 523 | }
|
---|
| 524 | }
|
---|
[5571] | 525 | }
|
---|
[13248] | 526 | default:
|
---|
| 527 | throw new NotSupportedException();
|
---|
[5571] | 528 | }
|
---|
| 529 | }
|
---|
| 530 | }
|
---|
[13248] | 531 | } |
---|