1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Globalization;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Analysis;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using HeuristicLab.Parameters;
|
---|
33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
36 | /// <summary>
|
---|
37 | /// Calculates the accumulated frequencies of variable-symbols over all trees in the population.
|
---|
38 | /// </summary>
|
---|
39 | [Item("SymbolicDataAnalysisVariableFrequencyAnalyzer", "Calculates the accumulated frequencies of variable-symbols over all trees in the population.")]
|
---|
40 | [StorableClass]
|
---|
41 | public sealed class SymbolicDataAnalysisVariableFrequencyAnalyzer : SymbolicDataAnalysisAnalyzer {
|
---|
42 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
43 | private const string AggregateLaggedVariablesParameterName = "AggregateLaggedVariables";
|
---|
44 | private const string AggregateFactorVariablesParameterName = "AggregateFactorVariables";
|
---|
45 | private const string VariableImpactsParameterName = "VariableImpacts";
|
---|
46 |
|
---|
47 | #region parameter properties
|
---|
48 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
49 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
50 | }
|
---|
51 | public ILookupParameter<DoubleMatrix> VariableImpactsParameter {
|
---|
52 | get { return (ILookupParameter<DoubleMatrix>)Parameters[VariableImpactsParameterName]; }
|
---|
53 | }
|
---|
54 | public IValueLookupParameter<BoolValue> AggregateLaggedVariablesParameter {
|
---|
55 | get { return (IValueLookupParameter<BoolValue>)Parameters[AggregateLaggedVariablesParameterName]; }
|
---|
56 | }
|
---|
57 | public IValueLookupParameter<BoolValue> AggregateFactorVariablesParameter {
|
---|
58 | get { return (IValueLookupParameter<BoolValue>)Parameters[AggregateFactorVariablesParameterName]; }
|
---|
59 | }
|
---|
60 | #endregion
|
---|
61 | #region properties
|
---|
62 | public BoolValue AggregateLaggedVariables {
|
---|
63 | get { return AggregateLaggedVariablesParameter.ActualValue; }
|
---|
64 | set { AggregateLaggedVariablesParameter.Value = value; }
|
---|
65 | }
|
---|
66 | public BoolValue AggregateFactorVariables {
|
---|
67 | get { return AggregateFactorVariablesParameter.ActualValue; }
|
---|
68 | set { AggregateFactorVariablesParameter.Value = value; }
|
---|
69 | }
|
---|
70 | #endregion
|
---|
71 | [StorableConstructor]
|
---|
72 | private SymbolicDataAnalysisVariableFrequencyAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
73 | private SymbolicDataAnalysisVariableFrequencyAnalyzer(SymbolicDataAnalysisVariableFrequencyAnalyzer original, Cloner cloner)
|
---|
74 | : base(original, cloner) {
|
---|
75 | }
|
---|
76 | public SymbolicDataAnalysisVariableFrequencyAnalyzer()
|
---|
77 | : base() {
|
---|
78 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The relative variable reference frequencies aggregated over all trees in the population."));
|
---|
79 | Parameters.Add(new LookupParameter<DoubleMatrix>(VariableImpactsParameterName, "The relative variable relevance calculated as the average relative variable frequency over the whole run."));
|
---|
80 | Parameters.Add(new ValueLookupParameter<BoolValue>(AggregateLaggedVariablesParameterName, "Switch that determines whether all references to a variable should be aggregated regardless of time-offsets. Turn off to analyze all variable references with different time offsets separately.", new BoolValue(true)));
|
---|
81 | Parameters.Add(new ValueLookupParameter<BoolValue>(AggregateFactorVariablesParameterName, "Switch that determines whether all references to factor variables should be aggregated regardless of the value. Turn off to analyze all factor variable references with different values separately.", new BoolValue(true)));
|
---|
82 | }
|
---|
83 |
|
---|
84 | [StorableHook(HookType.AfterDeserialization)]
|
---|
85 | private void AfterDeserialization() {
|
---|
86 | // BackwardsCompatibility3.3
|
---|
87 | #region Backwards compatible code, remove with 3.4
|
---|
88 | if (!Parameters.ContainsKey(AggregateFactorVariablesParameterName)) {
|
---|
89 | Parameters.Add(new ValueLookupParameter<BoolValue>(AggregateFactorVariablesParameterName, "Switch that determines whether all references to factor variables should be aggregated regardless of the value. Turn off to analyze all factor variable references with different values separately.", new BoolValue(true)));
|
---|
90 | }
|
---|
91 | #endregion
|
---|
92 | }
|
---|
93 |
|
---|
94 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
95 | return new SymbolicDataAnalysisVariableFrequencyAnalyzer(this, cloner);
|
---|
96 | }
|
---|
97 |
|
---|
98 | public override IOperation Apply() {
|
---|
99 | ItemArray<ISymbolicExpressionTree> expressions = SymbolicExpressionTreeParameter.ActualValue;
|
---|
100 | ResultCollection results = ResultCollection;
|
---|
101 | DataTable datatable;
|
---|
102 | if (VariableFrequenciesParameter.ActualValue == null) {
|
---|
103 | datatable = new DataTable("Variable frequencies", "Relative frequency of variable references aggregated over the whole population.");
|
---|
104 | datatable.VisualProperties.XAxisTitle = "Generation";
|
---|
105 | datatable.VisualProperties.YAxisTitle = "Relative Variable Frequency";
|
---|
106 | VariableFrequenciesParameter.ActualValue = datatable;
|
---|
107 | results.Add(new Result("Variable frequencies", "Relative frequency of variable references aggregated over the whole population.", datatable));
|
---|
108 | results.Add(new Result("Variable impacts", "The relative variable relevance calculated as the average relative variable frequency over the whole run.", new DoubleMatrix()));
|
---|
109 | }
|
---|
110 |
|
---|
111 | datatable = VariableFrequenciesParameter.ActualValue;
|
---|
112 | // all rows must have the same number of values so we can just take the first
|
---|
113 | int numberOfValues = datatable.Rows.Select(r => r.Values.Count).DefaultIfEmpty().First();
|
---|
114 |
|
---|
115 | foreach (var pair in CalculateVariableFrequencies(expressions, AggregateLaggedVariables.Value, AggregateFactorVariables.Value)) {
|
---|
116 | if (!datatable.Rows.ContainsKey(pair.Key)) {
|
---|
117 | // initialize a new row for the variable and pad with zeros
|
---|
118 | DataRow row = new DataRow(pair.Key, "", Enumerable.Repeat(0.0, numberOfValues));
|
---|
119 | row.VisualProperties.StartIndexZero = true;
|
---|
120 | datatable.Rows.Add(row);
|
---|
121 | }
|
---|
122 | datatable.Rows[pair.Key].Values.Add(Math.Round(pair.Value, 3));
|
---|
123 | }
|
---|
124 |
|
---|
125 | // add a zero for each data row that was not modified in the previous loop
|
---|
126 | foreach (var row in datatable.Rows.Where(r => r.Values.Count != numberOfValues + 1))
|
---|
127 | row.Values.Add(0.0);
|
---|
128 |
|
---|
129 | // update variable impacts matrix
|
---|
130 | var orderedImpacts = (from row in datatable.Rows
|
---|
131 | select new { Name = row.Name, Impact = Math.Round(datatable.Rows[row.Name].Values.Average(), 3) })
|
---|
132 | .OrderByDescending(p => p.Impact)
|
---|
133 | .ToList();
|
---|
134 | var impacts = new DoubleMatrix();
|
---|
135 | var matrix = impacts as IStringConvertibleMatrix;
|
---|
136 | matrix.Rows = orderedImpacts.Count;
|
---|
137 | matrix.RowNames = orderedImpacts.Select(x => x.Name);
|
---|
138 | matrix.Columns = 1;
|
---|
139 | matrix.ColumnNames = new string[] { "Relative variable relevance" };
|
---|
140 | int i = 0;
|
---|
141 | foreach (var p in orderedImpacts) {
|
---|
142 | matrix.SetValue(p.Impact.ToString(), i++, 0);
|
---|
143 | }
|
---|
144 |
|
---|
145 | VariableImpactsParameter.ActualValue = impacts;
|
---|
146 | results["Variable impacts"].Value = impacts;
|
---|
147 | return base.Apply();
|
---|
148 | }
|
---|
149 |
|
---|
150 | public static IEnumerable<KeyValuePair<string, double>> CalculateVariableFrequencies(IEnumerable<ISymbolicExpressionTree> trees,
|
---|
151 | bool aggregateLaggedVariables = true, bool aggregateFactorVariables = true) {
|
---|
152 |
|
---|
153 | var variableFrequencies = trees
|
---|
154 | .SelectMany(t => GetVariableReferences(t, aggregateLaggedVariables, aggregateFactorVariables))
|
---|
155 | .GroupBy(pair => pair.Key, pair => pair.Value)
|
---|
156 | .ToDictionary(g => g.Key, g => (double)g.Sum());
|
---|
157 |
|
---|
158 | double totalNumberOfSymbols = variableFrequencies.Values.Sum();
|
---|
159 |
|
---|
160 | foreach (var pair in variableFrequencies.OrderBy(p => p.Key, new NaturalStringComparer()))
|
---|
161 | yield return new KeyValuePair<string, double>(pair.Key, pair.Value / totalNumberOfSymbols);
|
---|
162 | }
|
---|
163 |
|
---|
164 | private static IEnumerable<KeyValuePair<string, int>> GetVariableReferences(ISymbolicExpressionTree tree,
|
---|
165 | bool aggregateLaggedVariables = true, bool aggregateFactorVariables = true) {
|
---|
166 | Dictionary<string, int> references = new Dictionary<string, int>();
|
---|
167 | if (aggregateLaggedVariables) {
|
---|
168 | tree.Root.ForEachNodePrefix(node => {
|
---|
169 | if (node is IVariableTreeNode) {
|
---|
170 | var factorNode = node as BinaryFactorVariableTreeNode;
|
---|
171 | if (factorNode != null && !aggregateFactorVariables) {
|
---|
172 | IncReferenceCount(references, factorNode.VariableName + "=" + factorNode.VariableValue);
|
---|
173 | } else {
|
---|
174 | var varNode = node as IVariableTreeNode;
|
---|
175 | IncReferenceCount(references, varNode.VariableName);
|
---|
176 | }
|
---|
177 | }
|
---|
178 | });
|
---|
179 | } else {
|
---|
180 | GetVariableReferences(references, tree.Root, 0, aggregateFactorVariables);
|
---|
181 | }
|
---|
182 | return references;
|
---|
183 | }
|
---|
184 |
|
---|
185 | private static void GetVariableReferences(Dictionary<string, int> references, ISymbolicExpressionTreeNode node, int currentLag, bool aggregateFactorVariables) {
|
---|
186 | if (node is IVariableTreeNode) {
|
---|
187 | var laggedVarTreeNode = node as LaggedVariableTreeNode;
|
---|
188 | var binFactorVariableTreeNode = node as BinaryFactorVariableTreeNode;
|
---|
189 | var varConditionTreeNode = node as VariableConditionTreeNode;
|
---|
190 | if (laggedVarTreeNode != null) {
|
---|
191 | IncReferenceCount(references, laggedVarTreeNode.VariableName, currentLag + laggedVarTreeNode.Lag);
|
---|
192 | } else if (binFactorVariableTreeNode != null) {
|
---|
193 | if (aggregateFactorVariables) {
|
---|
194 | IncReferenceCount(references, binFactorVariableTreeNode.VariableName, currentLag);
|
---|
195 | } else {
|
---|
196 | IncReferenceCount(references, binFactorVariableTreeNode.VariableName + "=" + binFactorVariableTreeNode.VariableValue, currentLag);
|
---|
197 | }
|
---|
198 | } else if (varConditionTreeNode != null) {
|
---|
199 | IncReferenceCount(references, varConditionTreeNode.VariableName, currentLag);
|
---|
200 | GetVariableReferences(references, node.GetSubtree(0), currentLag, aggregateFactorVariables);
|
---|
201 | GetVariableReferences(references, node.GetSubtree(1), currentLag, aggregateFactorVariables);
|
---|
202 | } else {
|
---|
203 | var varNode = node as IVariableTreeNode;
|
---|
204 | IncReferenceCount(references, varNode.VariableName, currentLag);
|
---|
205 | }
|
---|
206 | } else if (node.Symbol is Integral) {
|
---|
207 | var laggedNode = node as LaggedTreeNode;
|
---|
208 | for (int l = laggedNode.Lag; l <= 0; l++) {
|
---|
209 | GetVariableReferences(references, node.GetSubtree(0), currentLag + l, aggregateFactorVariables);
|
---|
210 | }
|
---|
211 | } else if (node.Symbol is Derivative) {
|
---|
212 | for (int l = -4; l <= 0; l++) {
|
---|
213 | GetVariableReferences(references, node.GetSubtree(0), currentLag + l, aggregateFactorVariables);
|
---|
214 | }
|
---|
215 | } else if (node.Symbol is TimeLag) {
|
---|
216 | var laggedNode = node as LaggedTreeNode;
|
---|
217 | GetVariableReferences(references, node.GetSubtree(0), currentLag + laggedNode.Lag, aggregateFactorVariables);
|
---|
218 | } else {
|
---|
219 | foreach (var subtree in node.Subtrees) {
|
---|
220 | GetVariableReferences(references, subtree, currentLag, aggregateFactorVariables);
|
---|
221 | }
|
---|
222 | }
|
---|
223 | }
|
---|
224 |
|
---|
225 | private static void IncReferenceCount(Dictionary<string, int> references, string variableName, int timeLag = 0) {
|
---|
226 | string referenceId = variableName +
|
---|
227 | (timeLag == 0 ? "" : timeLag < 0 ? "(t" + timeLag + ")" : "(t+" + timeLag + ")");
|
---|
228 | if (references.ContainsKey(referenceId)) {
|
---|
229 | references[referenceId]++;
|
---|
230 | } else {
|
---|
231 | references[referenceId] = 1;
|
---|
232 | }
|
---|
233 | }
|
---|
234 | }
|
---|
235 | }
|
---|