1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Windows.Forms;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core.Views;
|
---|
29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
30 | using HeuristicLab.MainForm;
|
---|
31 | using HeuristicLab.MainForm.WindowsForms;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Views {
|
---|
34 | [View("Response Function View")]
|
---|
35 | [Content(typeof(ISymbolicRegressionSolution), false)]
|
---|
36 | public partial class SymbolicRegressionSolutionResponseFunctionView : ItemView {
|
---|
37 | private Dictionary<string, List<ISymbolicExpressionTreeNode>> variableNodes;
|
---|
38 | private ISymbolicExpressionTree clonedTree;
|
---|
39 | private Dictionary<string, double> medianValues;
|
---|
40 | public SymbolicRegressionSolutionResponseFunctionView() {
|
---|
41 | InitializeComponent();
|
---|
42 | variableNodes = new Dictionary<string, List<ISymbolicExpressionTreeNode>>();
|
---|
43 | medianValues = new Dictionary<string, double>();
|
---|
44 | Caption = "Response Function View";
|
---|
45 | }
|
---|
46 |
|
---|
47 | public new ISymbolicRegressionSolution Content {
|
---|
48 | get { return (ISymbolicRegressionSolution)base.Content; }
|
---|
49 | set { base.Content = value; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | protected override void RegisterContentEvents() {
|
---|
53 | base.RegisterContentEvents();
|
---|
54 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
55 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
56 | }
|
---|
57 | protected override void DeregisterContentEvents() {
|
---|
58 | base.DeregisterContentEvents();
|
---|
59 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
60 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
61 | }
|
---|
62 |
|
---|
63 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
64 | OnModelChanged();
|
---|
65 | }
|
---|
66 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
67 | OnProblemDataChanged();
|
---|
68 | }
|
---|
69 |
|
---|
70 | protected virtual void OnModelChanged() {
|
---|
71 | this.UpdateView();
|
---|
72 | }
|
---|
73 |
|
---|
74 | protected virtual void OnProblemDataChanged() {
|
---|
75 | this.UpdateView();
|
---|
76 | }
|
---|
77 |
|
---|
78 | protected override void OnContentChanged() {
|
---|
79 | base.OnContentChanged();
|
---|
80 | this.UpdateView();
|
---|
81 | }
|
---|
82 |
|
---|
83 | private void UpdateView() {
|
---|
84 | if (Content != null && Content.Model != null && Content.ProblemData != null) {
|
---|
85 | var referencedVariables =
|
---|
86 | (from varNode in Content.Model.SymbolicExpressionTree.IterateNodesPrefix().OfType<VariableTreeNode>()
|
---|
87 | select varNode.VariableName)
|
---|
88 | .Distinct()
|
---|
89 | .OrderBy(x => x, new NaturalStringComparer())
|
---|
90 | .ToList();
|
---|
91 |
|
---|
92 | medianValues.Clear();
|
---|
93 | foreach (var variableName in referencedVariables) {
|
---|
94 | medianValues.Add(variableName, Content.ProblemData.Dataset.GetDoubleValues(variableName).Median());
|
---|
95 | }
|
---|
96 |
|
---|
97 | comboBox.Items.Clear();
|
---|
98 | comboBox.Items.AddRange(referencedVariables.ToArray());
|
---|
99 | comboBox.SelectedIndex = 0;
|
---|
100 | }
|
---|
101 | }
|
---|
102 |
|
---|
103 | private void CreateSliders(IEnumerable<string> variableNames) {
|
---|
104 | flowLayoutPanel.Controls.Clear();
|
---|
105 |
|
---|
106 | foreach (var variableName in variableNames) {
|
---|
107 | var variableTrackbar = new VariableTrackbar(variableName,
|
---|
108 | Content.ProblemData.Dataset.GetDoubleValues(variableName));
|
---|
109 | variableTrackbar.Size = new Size(variableTrackbar.Size.Width, flowLayoutPanel.Size.Height - 23);
|
---|
110 | variableTrackbar.ValueChanged += TrackBarValueChanged;
|
---|
111 | flowLayoutPanel.Controls.Add(variableTrackbar);
|
---|
112 | }
|
---|
113 | }
|
---|
114 |
|
---|
115 | private void TrackBarValueChanged(object sender, EventArgs e) {
|
---|
116 | var trackBar = (VariableTrackbar)sender;
|
---|
117 | string variableName = trackBar.VariableName;
|
---|
118 | ChangeVariableValue(variableName, trackBar.Value);
|
---|
119 | }
|
---|
120 |
|
---|
121 | private void ChangeVariableValue(string variableName, double value) {
|
---|
122 | foreach (var constNode in variableNodes[variableName].Cast<ConstantTreeNode>())
|
---|
123 | constNode.Value = value;
|
---|
124 |
|
---|
125 | UpdateResponseSeries();
|
---|
126 | }
|
---|
127 |
|
---|
128 | private void UpdateScatterPlot() {
|
---|
129 | string freeVariable = (string)comboBox.SelectedItem;
|
---|
130 | IEnumerable<string> fixedVariables = comboBox.Items.OfType<string>()
|
---|
131 | .Except(new string[] { freeVariable });
|
---|
132 |
|
---|
133 | // scatter plots for subset of samples that have values near the median values for all variables
|
---|
134 | Func<int, bool> NearMedianValue = (r) => {
|
---|
135 | foreach (var fixedVar in fixedVariables) {
|
---|
136 | double med = medianValues[fixedVar];
|
---|
137 | if (!(Content.ProblemData.Dataset.GetDoubleValue(fixedVar, r) < med + 0.1 * Math.Abs(med) &&
|
---|
138 | Content.ProblemData.Dataset.GetDoubleValue(fixedVar, r) > med - 0.1 * Math.Abs(med)))
|
---|
139 | return false;
|
---|
140 | }
|
---|
141 | return true;
|
---|
142 | };
|
---|
143 |
|
---|
144 | var mainTrainingIndices = (from row in Content.ProblemData.TrainingIndices
|
---|
145 | where NearMedianValue(row)
|
---|
146 | select row)
|
---|
147 | .ToArray();
|
---|
148 | var mainTestIndices = (from row in Content.ProblemData.TestIndices
|
---|
149 | where NearMedianValue(row)
|
---|
150 | select row)
|
---|
151 | .ToArray();
|
---|
152 |
|
---|
153 | var freeVariableValues = Content.ProblemData.Dataset.GetDoubleValues(freeVariable, mainTrainingIndices).ToArray();
|
---|
154 | var trainingValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable,
|
---|
155 | mainTrainingIndices).ToArray();
|
---|
156 | Array.Sort(freeVariableValues, trainingValues);
|
---|
157 | responseChart.Series["Training Data"].Points.DataBindXY(freeVariableValues, trainingValues);
|
---|
158 |
|
---|
159 | freeVariableValues = Content.ProblemData.Dataset.GetDoubleValues(freeVariable, mainTestIndices).ToArray();
|
---|
160 | var testValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable,
|
---|
161 | mainTestIndices).ToArray();
|
---|
162 | Array.Sort(freeVariableValues, testValues);
|
---|
163 | responseChart.Series["Test Data"].Points.DataBindXY(freeVariableValues, testValues);
|
---|
164 |
|
---|
165 | // draw scatter plots of remaining values
|
---|
166 | freeVariableValues = Content.ProblemData.Dataset.GetDoubleValues(freeVariable, Content.ProblemData.TrainingIndices).ToArray();
|
---|
167 | trainingValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable,
|
---|
168 | Content.ProblemData.TrainingIndices).ToArray();
|
---|
169 | Array.Sort(freeVariableValues, trainingValues);
|
---|
170 | responseChart.Series["Training Data (edge)"].Points.DataBindXY(freeVariableValues, trainingValues);
|
---|
171 |
|
---|
172 | freeVariableValues = Content.ProblemData.Dataset.GetDoubleValues(freeVariable, Content.ProblemData.TestIndices).ToArray();
|
---|
173 | testValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable,
|
---|
174 | Content.ProblemData.TestIndices).ToArray();
|
---|
175 | Array.Sort(freeVariableValues, testValues);
|
---|
176 | responseChart.Series["Test Data (edge)"].Points.DataBindXY(freeVariableValues, testValues);
|
---|
177 |
|
---|
178 |
|
---|
179 |
|
---|
180 | responseChart.ChartAreas[0].AxisX.Maximum = Math.Ceiling(freeVariableValues.Max());
|
---|
181 | responseChart.ChartAreas[0].AxisX.Minimum = Math.Floor(freeVariableValues.Min());
|
---|
182 | responseChart.ChartAreas[0].AxisY.Maximum = Math.Ceiling(Math.Max(testValues.Max(), trainingValues.Max()));
|
---|
183 | responseChart.ChartAreas[0].AxisY.Minimum = Math.Floor(Math.Min(testValues.Min(), trainingValues.Min()));
|
---|
184 | }
|
---|
185 |
|
---|
186 | private void UpdateResponseSeries() {
|
---|
187 | string freeVariable = (string)comboBox.SelectedItem;
|
---|
188 |
|
---|
189 | var freeVariableValues = Content.ProblemData.Dataset.GetDoubleValues(freeVariable, Content.ProblemData.TrainingIndices).ToArray();
|
---|
190 | var responseValues = Content.Model.Interpreter.GetSymbolicExpressionTreeValues(clonedTree,
|
---|
191 | Content.ProblemData.Dataset,
|
---|
192 | Content.ProblemData.TrainingIndices)
|
---|
193 | .ToArray();
|
---|
194 | Array.Sort(freeVariableValues, responseValues);
|
---|
195 | responseChart.Series["Model Response"].Points.DataBindXY(freeVariableValues, responseValues);
|
---|
196 | }
|
---|
197 |
|
---|
198 | private void ComboBoxSelectedIndexChanged(object sender, EventArgs e) {
|
---|
199 | string freeVariable = (string)comboBox.SelectedItem;
|
---|
200 | IEnumerable<string> fixedVariables = comboBox.Items.OfType<string>()
|
---|
201 | .Except(new string[] { freeVariable });
|
---|
202 |
|
---|
203 | variableNodes.Clear();
|
---|
204 | clonedTree = (ISymbolicExpressionTree)Content.Model.SymbolicExpressionTree.Clone();
|
---|
205 |
|
---|
206 | foreach (var varNode in clonedTree.IterateNodesPrefix().OfType<VariableTreeNode>()) {
|
---|
207 | if (fixedVariables.Contains(varNode.VariableName)) {
|
---|
208 | if (!variableNodes.ContainsKey(varNode.VariableName))
|
---|
209 | variableNodes.Add(varNode.VariableName, new List<ISymbolicExpressionTreeNode>());
|
---|
210 |
|
---|
211 | int childIndex = varNode.Parent.IndexOfSubtree(varNode);
|
---|
212 | var replacementNode = MakeConstantTreeNode(medianValues[varNode.VariableName]);
|
---|
213 | var parent = varNode.Parent;
|
---|
214 | parent.RemoveSubtree(childIndex);
|
---|
215 | parent.InsertSubtree(childIndex, MakeProduct(replacementNode, varNode.Weight));
|
---|
216 | variableNodes[varNode.VariableName].Add(replacementNode);
|
---|
217 | }
|
---|
218 | }
|
---|
219 |
|
---|
220 | CreateSliders(fixedVariables);
|
---|
221 | UpdateScatterPlot();
|
---|
222 | UpdateResponseSeries();
|
---|
223 | }
|
---|
224 |
|
---|
225 | private ISymbolicExpressionTreeNode MakeProduct(ConstantTreeNode c, double weight) {
|
---|
226 | var mul = new Multiplication();
|
---|
227 | var prod = mul.CreateTreeNode();
|
---|
228 | prod.AddSubtree(MakeConstantTreeNode(weight));
|
---|
229 | prod.AddSubtree(c);
|
---|
230 | return prod;
|
---|
231 | }
|
---|
232 |
|
---|
233 | private ConstantTreeNode MakeConstantTreeNode(double value) {
|
---|
234 | Constant constant = new Constant();
|
---|
235 | constant.MinValue = value - 1;
|
---|
236 | constant.MaxValue = value + 1;
|
---|
237 | ConstantTreeNode constantTreeNode = (ConstantTreeNode)constant.CreateTreeNode();
|
---|
238 | constantTreeNode.Value = value;
|
---|
239 | return constantTreeNode;
|
---|
240 | }
|
---|
241 | }
|
---|
242 | }
|
---|