1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HEAL.Fossil;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
30 | /// <summary>
|
---|
31 | /// Represents a symbolic classification model
|
---|
32 | /// </summary>
|
---|
33 | [StorableType("8AEAF4A5-839D-4070-A348-440E79110C74")]
|
---|
34 | [Item(Name = "SymbolicClassificationModel", Description = "Represents a symbolic classification model.")]
|
---|
35 | public abstract class SymbolicClassificationModel : SymbolicDataAnalysisModel, ISymbolicClassificationModel {
|
---|
36 | [Storable]
|
---|
37 | private string targetVariable;
|
---|
38 | public string TargetVariable {
|
---|
39 | get { return targetVariable; }
|
---|
40 | set {
|
---|
41 | if (string.IsNullOrEmpty(value) || targetVariable == value) return;
|
---|
42 | targetVariable = value;
|
---|
43 | OnTargetVariableChanged(this, EventArgs.Empty);
|
---|
44 | }
|
---|
45 | }
|
---|
46 |
|
---|
47 | [StorableConstructor]
|
---|
48 | protected SymbolicClassificationModel(StorableConstructorFlag _) : base(_) {
|
---|
49 | targetVariable = string.Empty;
|
---|
50 | }
|
---|
51 |
|
---|
52 | protected SymbolicClassificationModel(SymbolicClassificationModel original, Cloner cloner)
|
---|
53 | : base(original, cloner) {
|
---|
54 | targetVariable = original.targetVariable;
|
---|
55 | }
|
---|
56 |
|
---|
57 | protected SymbolicClassificationModel(string targetVariable, ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue)
|
---|
58 | : base(tree, interpreter, lowerEstimationLimit, upperEstimationLimit) {
|
---|
59 | this.targetVariable = targetVariable;
|
---|
60 | }
|
---|
61 |
|
---|
62 | public abstract IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows);
|
---|
63 | public abstract void RecalculateModelParameters(IClassificationProblemData problemData, IEnumerable<int> rows);
|
---|
64 |
|
---|
65 | public abstract ISymbolicClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData);
|
---|
66 |
|
---|
67 | IClassificationSolution IClassificationModel.CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
68 | return CreateClassificationSolution(problemData);
|
---|
69 | }
|
---|
70 |
|
---|
71 | public void Scale(IClassificationProblemData problemData) {
|
---|
72 | Scale(problemData, problemData.TargetVariable);
|
---|
73 | }
|
---|
74 |
|
---|
75 | public virtual bool IsProblemDataCompatible(IClassificationProblemData problemData, out string errorMessage) {
|
---|
76 | return ClassificationModel.IsProblemDataCompatible(this, problemData, out errorMessage);
|
---|
77 | }
|
---|
78 |
|
---|
79 | public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
|
---|
80 | if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
|
---|
81 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
82 | if (classificationProblemData == null)
|
---|
83 | throw new ArgumentException("The problem data is not a regression problem data. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
|
---|
84 | return IsProblemDataCompatible(classificationProblemData, out errorMessage);
|
---|
85 | }
|
---|
86 |
|
---|
87 | #region events
|
---|
88 | public event EventHandler TargetVariableChanged;
|
---|
89 | private void OnTargetVariableChanged(object sender, EventArgs args) {
|
---|
90 | var changed = TargetVariableChanged;
|
---|
91 | if (changed != null)
|
---|
92 | changed(sender, args);
|
---|
93 | }
|
---|
94 | #endregion
|
---|
95 | }
|
---|
96 | }
|
---|