[15080] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16453] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[15080] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
[16559] | 24 | using HEAL.Attic;
|
---|
[15080] | 25 |
|
---|
| 26 | namespace HeuristicLab.Optimization {
|
---|
[16476] | 27 | [StorableType("d76eb753-5088-4490-ad18-e78d3629c60b")]
|
---|
[15080] | 28 | public enum DominationResult { Dominates, IsDominated, IsNonDominated };
|
---|
| 29 |
|
---|
| 30 | public static class DominationCalculator<T> {
|
---|
| 31 | /// <summary>
|
---|
| 32 | /// Calculates the best pareto front only. The fast non-dominated sorting algorithm is used
|
---|
| 33 | /// as described in Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
|
---|
| 34 | /// A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.
|
---|
| 35 | /// IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
|
---|
| 36 | /// </summary>
|
---|
| 37 | /// <remarks>
|
---|
| 38 | /// When there are plateaus in the fitness landscape several solutions might have exactly
|
---|
| 39 | /// the same fitness vector. In this case parameter <paramref name="dominateOnEqualQualities"/>
|
---|
| 40 | /// can be set to true to avoid plateaus becoming too attractive for the search process.
|
---|
| 41 | /// </remarks>
|
---|
| 42 | /// <param name="solutions">The solutions of the population.</param>
|
---|
| 43 | /// <param name="qualities">The qualities resp. fitness for each solution.</param>
|
---|
| 44 | /// <param name="maximization">The objective in each dimension.</param>
|
---|
| 45 | /// <param name="dominateOnEqualQualities">Whether solutions of exactly equal quality should dominate one another.</param>
|
---|
| 46 | /// <returns>The pareto front containing the best solutions and their associated quality resp. fitness.</returns>
|
---|
| 47 | public static List<Tuple<T, double[]>> CalculateBestParetoFront(T[] solutions, double[][] qualities, bool[] maximization, bool dominateOnEqualQualities = true) {
|
---|
| 48 | int populationSize = solutions.Length;
|
---|
| 49 |
|
---|
| 50 | Dictionary<T, List<int>> dominatedIndividuals;
|
---|
| 51 | int[] dominationCounter, rank;
|
---|
| 52 | return CalculateBestFront(solutions, qualities, maximization, dominateOnEqualQualities, populationSize, out dominatedIndividuals, out dominationCounter, out rank);
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | /// <summary>
|
---|
| 56 | /// Calculates all pareto fronts. The first in the list is the best front.
|
---|
| 57 | /// The fast non-dominated sorting algorithm is used as described in
|
---|
| 58 | /// Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
|
---|
| 59 | /// A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.
|
---|
| 60 | /// IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
|
---|
| 61 | /// </summary>
|
---|
| 62 | /// <remarks>
|
---|
| 63 | /// When there are plateaus in the fitness landscape several solutions might have exactly
|
---|
| 64 | /// the same fitness vector. In this case parameter <paramref name="dominateOnEqualQualities"/>
|
---|
| 65 | /// can be set to true to avoid plateaus becoming too attractive for the search process.
|
---|
| 66 | /// </remarks>
|
---|
| 67 | /// <param name="solutions">The solutions of the population.</param>
|
---|
| 68 | /// <param name="qualities">The qualities resp. fitness for each solution.</param>
|
---|
| 69 | /// <param name="maximization">The objective in each dimension.</param>
|
---|
| 70 | /// <param name="rank">The rank of each of the solutions, corresponds to the front it is put in.</param>
|
---|
| 71 | /// <param name="dominateOnEqualQualities">Whether solutions of exactly equal quality should dominate one another.</param>
|
---|
| 72 | /// <returns>A sorted list of the pareto fronts from best to worst.</returns>
|
---|
| 73 | public static List<List<Tuple<T, double[]>>> CalculateAllParetoFronts(T[] solutions, double[][] qualities, bool[] maximization, out int[] rank, bool dominateOnEqualQualities = true) {
|
---|
| 74 | int populationSize = solutions.Length;
|
---|
| 75 |
|
---|
| 76 | Dictionary<T, List<int>> dominatedIndividuals;
|
---|
| 77 | int[] dominationCounter;
|
---|
| 78 | var fronts = new List<List<Tuple<T, double[]>>>();
|
---|
| 79 | fronts.Add(CalculateBestFront(solutions, qualities, maximization, dominateOnEqualQualities, populationSize, out dominatedIndividuals, out dominationCounter, out rank));
|
---|
| 80 | int i = 0;
|
---|
| 81 | while (i < fronts.Count && fronts[i].Count > 0) {
|
---|
| 82 | var nextFront = new List<Tuple<T, double[]>>();
|
---|
| 83 | foreach (var p in fronts[i]) {
|
---|
| 84 | List<int> dominatedIndividualsByp;
|
---|
| 85 | if (dominatedIndividuals.TryGetValue(p.Item1, out dominatedIndividualsByp)) {
|
---|
| 86 | for (int k = 0; k < dominatedIndividualsByp.Count; k++) {
|
---|
| 87 | int dominatedIndividual = dominatedIndividualsByp[k];
|
---|
| 88 | dominationCounter[dominatedIndividual] -= 1;
|
---|
| 89 | if (dominationCounter[dominatedIndividual] == 0) {
|
---|
| 90 | rank[dominatedIndividual] = i + 1;
|
---|
| 91 | nextFront.Add(Tuple.Create(solutions[dominatedIndividual], qualities[dominatedIndividual]));
|
---|
| 92 | }
|
---|
| 93 | }
|
---|
| 94 | }
|
---|
| 95 | }
|
---|
| 96 | i += 1;
|
---|
| 97 | fronts.Add(nextFront);
|
---|
| 98 | }
|
---|
| 99 | return fronts;
|
---|
| 100 | }
|
---|
| 101 |
|
---|
[15086] | 102 | private static List<Tuple<T, double[]>> CalculateBestFront(T[] solutions, double[][] qualities, bool[] maximization, bool dominateOnEqualQualities, int populationSize, out Dictionary<T, List<int>> dominatedIndividuals, out int[] dominationCounter, out int[] rank) {
|
---|
[15080] | 103 | var front = new List<Tuple<T, double[]>>();
|
---|
| 104 | dominatedIndividuals = new Dictionary<T, List<int>>();
|
---|
| 105 | dominationCounter = new int[populationSize];
|
---|
| 106 | rank = new int[populationSize];
|
---|
| 107 | for (int pI = 0; pI < populationSize - 1; pI++) {
|
---|
[15086] | 108 | var p = solutions[pI];
|
---|
[15080] | 109 | List<int> dominatedIndividualsByp;
|
---|
| 110 | if (!dominatedIndividuals.TryGetValue(p, out dominatedIndividualsByp))
|
---|
| 111 | dominatedIndividuals[p] = dominatedIndividualsByp = new List<int>();
|
---|
| 112 | for (int qI = pI + 1; qI < populationSize; qI++) {
|
---|
| 113 | var test = Dominates(qualities[pI], qualities[qI], maximization, dominateOnEqualQualities);
|
---|
| 114 | if (test == DominationResult.Dominates) {
|
---|
| 115 | dominatedIndividualsByp.Add(qI);
|
---|
| 116 | dominationCounter[qI] += 1;
|
---|
| 117 | } else if (test == DominationResult.IsDominated) {
|
---|
| 118 | dominationCounter[pI] += 1;
|
---|
[15086] | 119 | if (!dominatedIndividuals.ContainsKey(solutions[qI]))
|
---|
| 120 | dominatedIndividuals.Add(solutions[qI], new List<int>());
|
---|
| 121 | dominatedIndividuals[solutions[qI]].Add(pI);
|
---|
[15080] | 122 | }
|
---|
| 123 | if (pI == populationSize - 2
|
---|
| 124 | && qI == populationSize - 1
|
---|
| 125 | && dominationCounter[qI] == 0) {
|
---|
| 126 | rank[qI] = 0;
|
---|
[15086] | 127 | front.Add(Tuple.Create(solutions[qI], qualities[qI]));
|
---|
[15080] | 128 | }
|
---|
| 129 | }
|
---|
| 130 | if (dominationCounter[pI] == 0) {
|
---|
| 131 | rank[pI] = 0;
|
---|
| 132 | front.Add(Tuple.Create(p, qualities[pI]));
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 | return front;
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | /// <summary>
|
---|
| 139 | /// Calculates the domination result of two solutions which are given in form
|
---|
| 140 | /// of their quality resp. fitness vector.
|
---|
| 141 | /// </summary>
|
---|
| 142 | /// <param name="left">The fitness of the solution that is to be compared.</param>
|
---|
| 143 | /// <param name="right">The fitness of the solution which is compared against.</param>
|
---|
| 144 | /// <param name="maximizations">The objective in each dimension.</param>
|
---|
| 145 | /// <param name="dominateOnEqualQualities">Whether the result should be Dominates in case both fitness vectors are exactly equal</param>
|
---|
| 146 | /// <returns>Dominates if left dominates right, IsDominated if right dominates left and IsNonDominated otherwise.</returns>
|
---|
| 147 | public static DominationResult Dominates(double[] left, double[] right, bool[] maximizations, bool dominateOnEqualQualities) {
|
---|
| 148 | //mkommend Caution: do not use LINQ.SequenceEqual for comparing the two quality arrays (left and right) due to performance reasons
|
---|
| 149 | if (dominateOnEqualQualities) {
|
---|
| 150 | var equal = true;
|
---|
| 151 | for (int i = 0; i < left.Length; i++) {
|
---|
| 152 | if (left[i] != right[i]) {
|
---|
| 153 | equal = false;
|
---|
| 154 | break;
|
---|
| 155 | }
|
---|
| 156 | }
|
---|
| 157 | if (equal) return DominationResult.Dominates;
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | bool leftIsBetter = false, rightIsBetter = false;
|
---|
| 161 | for (int i = 0; i < left.Length; i++) {
|
---|
| 162 | if (IsDominated(left[i], right[i], maximizations[i])) rightIsBetter = true;
|
---|
| 163 | else if (IsDominated(right[i], left[i], maximizations[i])) leftIsBetter = true;
|
---|
| 164 | if (leftIsBetter && rightIsBetter) break;
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | if (leftIsBetter && !rightIsBetter) return DominationResult.Dominates;
|
---|
| 168 | if (!leftIsBetter && rightIsBetter) return DominationResult.IsDominated;
|
---|
| 169 | return DominationResult.IsNonDominated;
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | /// <summary>
|
---|
| 173 | /// A simple check if the quality resp. fitness in <paramref name="left"/> is better than
|
---|
| 174 | /// that given in <paramref name="right"/>.
|
---|
| 175 | /// </summary>
|
---|
| 176 | /// <param name="left">The first fitness value</param>
|
---|
| 177 | /// <param name="right">The second fitness value</param>
|
---|
| 178 | /// <param name="maximization">The objective direction</param>
|
---|
| 179 | /// <returns>True if left is better than right, false if it is not.</returns>
|
---|
| 180 | public static bool IsDominated(double left, double right, bool maximization) {
|
---|
| 181 | return maximization && left < right
|
---|
| 182 | || !maximization && left > right;
|
---|
| 183 | }
|
---|
| 184 | }
|
---|
| 185 | }
|
---|