Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2457_ExpertSystem/WalkExporter/Program.cs @ 17108

Last change on this file since 17108 was 16955, checked in by abeham, 6 years ago

#2457: worked on thesis

File size: 13.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.IO;
25using System.Linq;
26using System.Text.RegularExpressions;
27using HeuristicLab.Random;
28using ProtoBuf;
29using static HeuristicLab.Analysis.FitnessLandscape.QAPDirectedWalk;
30
31namespace WalkExporter {
32  class Program {
33    public static readonly string[] SBF = new[] { "Sharpness", "Bumpiness", "Flatness" };
34    public static readonly string[] RUG = new[] {
35      "AC1", "CorrelationLength" };
36    public static readonly string[] IAL = new[] {
37      "InformationContent", "DensityBasinInformation", "PartialInformationContent",
38      "InformationStability", "Diversity", "Regularity", "TotalEntropy", "SymmetricInformationContent",
39      "SymmetricDensityBasinInformation", "SymmetricTotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation",
40      "PeakTotalEntropy", "PeakSymmetricInformationContent", "PeakSymmetricDensityBasinInformation", "PeakSymmetricTotalEntropy" };
41    public static readonly string[] IALREG = new[] {
42      "InformationContent", "DensityBasinInformation", "PartialInformationContent",
43      "InformationStability", "Diversity", "Regularity", "TotalEntropy",
44      "PeakInformationContent", "PeakDensityBasinInformation", "PeakTotalEntropy"
45    };
46    public static readonly string[] IALSYM = new[] {
47      "PartialInformationContent", "InformationStability", "Diversity", "Regularity",
48      "SymmetricInformationContent", "SymmetricDensityBasinInformation", "SymmetricTotalEntropy",
49      "PeakSymmetricInformationContent", "PeakSymmetricDensityBasinInformation", "PeakSymmetricTotalEntropy"
50    };
51   
52
53    static void Main(string[] args) {
54      //AnalyzeRandomWalkIdentification();
55      //AnalyzeDirectedWalkIdentification();
56      var provider = new HeuristicLab.Problems.Instances.QAPLIB.QAPLIBInstanceProvider();
57      var tai30a = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name == "tai30a"));
58      RandomWalk.ConfinedRandomWalkAnalysis(tai30a);
59      var esc32f = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name == "esc32f"));
60      RandomWalk.ConfinedRandomWalkAnalysis(esc32f);
61    }
62
63    private static void AnalyzeRandomWalkIdentification() {
64      string[] RUG_IAL = RUG.Concat(IAL).ToArray();
65
66      var trainFiles = GetFiles(@"randwalk_kb_train_(?<eff>\d+)");
67      var testFiles = GetFiles(@"randwalk_kb_test_(?<eff>\d+)");
68
69      var filename = "randwalk_results.csv";
70
71      var features = new[] { (Name: "RUG", Set: RUG), (Name: "IAL", Set: IAL),
72        (Name: "IALREG", Set: IALREG), (Name: "IALSYM", Set: IALSYM), (Name: "RUG_IAL", Set: RUG_IAL) };
73
74      using (var writer = File.CreateText(filename)) {
75        CompareMatching(trainFiles, testFiles, features, "randwalk", writer);
76      }
77    }
78
79    private static void AnalyzeDirectedWalkIdentification() {
80      string[] RUG_IAL = RUG.Concat(IAL).ToArray();
81      string[] SBF_RUG = SBF.Concat(RUG).ToArray();
82      string[] SBF_IAL = SBF.Concat(IAL).ToArray();
83      string[] SBF_IALREG = SBF.Concat(IALREG).ToArray();
84      string[] SBF_IALSYM = SBF.Concat(IALSYM).ToArray();
85
86      var features = new[] { (Name: "RUG", Set: RUG), (Name: "IAL", Set: IAL),
87        (Name: "IALREG", Set: IALREG), (Name: "IALSYM", Set: IALSYM), (Name: "SBF", Set: SBF),
88        (Name: "RUG_IAL", Set: RUG_IAL), (Name: "SBF_RUG", Set: SBF_RUG), (Name: "SBF_IAL", Set: SBF_IAL),
89        (Name: "SBF_IALREG", Set: SBF_IALREG), (Name: "SBF_IALSYM", Set: SBF_IALSYM) };
90
91
92      var trainFiles = GetFiles(@"rrdw_best_kb_train_(?<eff>\d+)_qap");
93      var testFiles = GetFiles(@"rrdw_best_kb_test_(?<eff>\d+)_qap");
94
95      var filename = "rrdw_best_results.csv";
96
97      //using (var writer = File.CreateText(filename)) {
98      //  CompareMatching(trainFiles, testFiles, features, "(rr)-dw", writer);
99      //}
100      //trainFiles = GetFiles(@"rldw_best_kb_train_(?<eff>\d+)_qap");
101      //testFiles = GetFiles(@"rldw_best_kb_test_(?<eff>\d+)_qap");
102
103      //filename = "rldw_best_results.csv";
104
105      //using (var writer = File.CreateText(filename)) {
106      //  CompareMatching(trainFiles, testFiles, features, "(rl)-dw", writer);
107      //}
108
109      trainFiles = GetFiles(@"lldw_best_kb_train_(?<eff>\d+)_qap");
110      testFiles = GetFiles(@"lldw_best_kb_test_(?<eff>\d+)_qap");
111
112      filename = "lldw_best_results.csv";
113
114      using (var writer = File.CreateText(filename)) {
115        CompareMatching(trainFiles, testFiles, features, "(ll)-dw", writer);
116      }
117
118      trainFiles = GetFiles(@"lidw_best_kb_train_(?<eff>\d+)_qap");
119      testFiles = GetFiles(@"lidw_best_kb_test_(?<eff>\d+)_qap");
120
121      filename = "lidw_best_results.csv";
122
123      using (var writer = File.CreateText(filename)) {
124        CompareMatching(trainFiles, testFiles, features, "(li)-dw", writer);
125      }
126    }
127
128    private static List<(string Filename, int Effort)> GetFiles(string pattern) {
129      // randwalk_kb_(train|test)_{n}.buf
130      // {type}dw_best_kb_(train|test)_{n}_qap.buf
131
132      return Directory.EnumerateFiles(".").Where(x => x.EndsWith(".buf"))
133        .Select(x => {
134          var match = Regex.Match(Path.GetFileName(x), pattern);
135          if (match.Success) {
136            return (Filename: x, Effort: int.Parse(match.Groups["eff"].Value));
137          }
138          return (Filename: "", Effort: -1);
139        }).Where(x => !string.IsNullOrEmpty(x.Filename)).ToList();
140    }
141
142    private static void CompareMatching(List<(string Filename, int Effort)> trainFiles,
143        List<(string Filename, int Effort)> testFiles, (string Name, string[] Set)[] featuresets,
144        string type,
145        StreamWriter writer) {
146      var random = new MersenneTwister(42);
147      var header = string.Format("{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}\t{7}\t{8}\t{9}\t{10}\t{11}",
148          "Dimension", "FSet", "Type", "TrainEff", "TestEff", "ExCnt", "ExRnk", "ClsCnt", "ClsRnk", "TotCnt", "TrainEffSolEquiv", "TestEffSolEquiv");
149      writer.WriteLine(header);
150      Console.WriteLine(header);
151
152      foreach (var features in featuresets) {
153        foreach (var dim in new[] { 20, 30, 40 }) {
154          foreach (var a in trainFiles) {
155            Knowledgebase train = null;
156            using (var stream = File.OpenRead(a.Filename))
157              train = Serializer.Deserialize<Knowledgebase>(stream);
158
159            train.Problems.RemoveAll(x => x.Dimension != dim);
160            if (train.Problems.Count == 0) throw new InvalidOperationException("Dimension does not exist: " + dim);
161
162            var standardizer = InstancesStandardizer.CreateAndApply(train.Problems, features.Set);
163
164            foreach (var b in testFiles) {
165              Knowledgebase test = null;
166              using (var stream = File.OpenRead(b.Filename))
167                test = Serializer.Deserialize<Knowledgebase>(stream);
168
169              test.Problems.RemoveAll(x => x.Dimension != dim);
170              standardizer.Apply(test.Problems);
171              // MATCH
172
173              var match = EvaluateMatch(random, train, test, new HashSet<string>(features.Set));
174
175              //correlation analysis
176              //var corr = AnalyzeFeatureCorrelation(features.Set, train, test);
177
178              string output = string.Format("{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6:F2}\t{7}\t{8:F2}\t{9}\t{10:F2}\t{11:F2}",
179                dim, features.Name, type, a.Effort, b.Effort, match.ExactCount,
180                match.ExactAverageRank, match.ClsCount, match.ClsAverageRank, match.TotalCount,
181                match.TrainingDescriptionEffort, match.TestDescriptionEffort);
182              writer.WriteLine(output);
183              Console.WriteLine(output);
184            }
185          }
186        }
187      }
188    }
189
190    private static MatchResult EvaluateMatch(MersenneTwister random, Knowledgebase train, Knowledgebase test, ISet<string> features) {
191      var result = new MatchResult();
192
193      foreach (var x in train.Problems) {
194
195        var ranked = test.Problems.Shuffle(random).Select(y => new {
196          Instance = y,
197          Distance = (from xx in x.Features.Where(f => features.Contains(f.Key))
198                      from yy in y.Features.Where(f => features.Contains(f.Key))
199                      where xx.Key == yy.Key
200                      let vxx = xx.GetNumericValue()
201                      let vyy = yy.GetNumericValue()
202                      select (vxx - vyy) * (vxx - vyy)).Sum(),
203        }).OrderBy(xx => xx.Distance).ToList();
204
205        var exactRank = -1;
206        var clsRank = -1;
207        var count = 1;
208        foreach (var r in ranked) {
209          result.TestDescriptionEffort += r.Instance.DescriptionEffort;
210          if (clsRank < 0 && r.Instance.Class == x.Class) {
211            clsRank = count;
212          }
213          if (r.Instance.Name == x.Name) {
214            exactRank = count;
215            break;
216          }
217          count++;
218        }
219        result.TestDescriptionEffort /= test.Problems.Count;
220        if (exactRank == 1) result.ExactCount++;
221        if (clsRank == 1) result.ClsCount++;
222        result.TotalCount++;
223
224        result.TrainingDescriptionEffort += x.DescriptionEffort;
225        result.ExactAverageRank += exactRank;
226        result.ClsAverageRank += clsRank;
227
228      }
229      result.TrainingDescriptionEffort /= train.Problems.Count;
230      result.ExactAverageRank /= train.Problems.Count;
231      result.ClsAverageRank /= train.Problems.Count;
232
233      return result;
234    }
235
236    private static double[,] AnalyzeFeatureCorrelation(string[] features, Knowledgebase train, Knowledgebase test) {
237      var trainMat = new double[train.Problems.Count, features.Length];
238      var testMat = new double[test.Problems.Count, features.Length];
239      int trainCount = 0, testCount = 0;
240
241      foreach (var x in train.Problems) {
242        var xFeatures = x.GetNumericFeatures(features);
243        foreach (var f in xFeatures.Select((v, i) => new { Index = i, Value = v })) {
244          trainMat[trainCount, f.Index] = f.Value;
245        }
246        trainCount++;
247      }
248      foreach (var y in test.Problems) {
249        var yFeatures = y.GetNumericFeatures(features);
250        foreach (var f in yFeatures.Select((v, i) => new { Index = i, Value = v })) {
251          testMat[testCount, f.Index] = f.Value;
252        }
253        testCount++;
254      }
255
256      double[,] corr;
257      alglib.pearsoncorrm2(trainMat, testMat, out corr);
258      return corr;
259    }
260
261    private static void DoRandomWalk() {
262      var experiment = RandomWalk.PerformExperiment();
263      Serializer.Serialize(File.Create("randwalk_trials_qap.buf"), experiment);
264      foreach (var exp in Enumerable.Range(7, 18 - 6)) {
265        var len = (int)Math.Pow(2, exp);
266        var (training, test) = RandomWalk.GetKnowledgeBases(experiment, len);
267        Serializer.Serialize(File.Create($"randwalk_kb_train_{exp}.buf"), training);
268        Serializer.Serialize(File.Create($"randwalk_kb_test_{exp}.buf"), test);
269      }
270    }
271
272    private static void DoDirectedWalk() {
273      var (exp, train, test) = DirectedWalk.PerformExperiment(WalkType.RandomRandom);
274      Save("rrdw_best", exp, train, test);
275      (exp, train, test) = DirectedWalk.PerformExperiment(WalkType.RandomLocal);
276      Save("rldw_best", exp, train, test);
277      (exp, train, test) = DirectedWalk.PerformExperiment(WalkType.LocalLocal);
278      Save("lldw_best", exp, train, test);
279      (exp, train, test) = DirectedWalk.PerformExperiment(WalkType.LocalInverse);
280      Save("lidw_best", exp, train, test);
281    }
282
283    private static void Save(string v, Experiment exp, Dictionary<int, Knowledgebase> train, Dictionary<int, Knowledgebase> test) {
284      Serializer.Serialize(File.Create(v + "_experiment_qap.buf"), exp);
285      foreach (var t in train.Keys) {
286        Serializer.Serialize(File.Create(v + $"_kb_train_{t}_qap.buf"), train[t]);
287        Serializer.Serialize(File.Create(v + $"_kb_test_{t}_qap.buf"), test[t]);
288      }
289    }
290  }
291
292  public class MatchResult {
293    public int ExactCount { get; set; }
294    public int ClsCount { get; set; }
295    public int TotalCount { get; set; }
296    public double ExactAverageRank { get; set; }
297    public double ClsAverageRank { get; set; }
298
299    public double TrainingDescriptionEffort { get; set; }
300    public double TestDescriptionEffort { get; set; }
301  }
302}
Note: See TracBrowser for help on using the repository browser.