[14678] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
[14690] | 3 | using System.Globalization;
|
---|
[16096] | 4 | using System.IO;
|
---|
[14678] | 5 | using System.Linq;
|
---|
| 6 | using System.Threading.Tasks;
|
---|
[16096] | 7 | using HeuristicLab.Analysis.FitnessLandscape;
|
---|
[14678] | 8 | using HeuristicLab.Problems.Instances.QAPLIB;
|
---|
| 9 | using HeuristicLab.Problems.QuadraticAssignment;
|
---|
[14691] | 10 | using HeuristicLab.Random;
|
---|
[14678] | 11 |
|
---|
| 12 | namespace ProblemInstanceIdentifier {
|
---|
| 13 | class Program {
|
---|
| 14 | static void Main(string[] args) {
|
---|
[14691] | 15 |
|
---|
| 16 | /*var classes = instances.Select(InstanceDescriptor.FromProblemOnly).GroupBy(x => x.Cls);
|
---|
| 17 | foreach (var cls in classes.OrderBy(x => x.Key)) {
|
---|
| 18 | Console.WriteLine("{0};{1}", cls.Key, cls.Count());
|
---|
| 19 | }*/
|
---|
| 20 |
|
---|
[16096] | 21 | var dwFeatureSets = new Dictionary<string, HashSet<string>>() {
|
---|
| 22 | { "SBF", new HashSet<string>() { "Sharpness", "Bumpiness", "Flatness" } },
|
---|
| 23 | { "FRQ", new HashSet<string>() { "DownQ2", "NeutQ2", "UpQ2", "DownQ1", "NeutQ1", "UpQ1", "DownQ3", "NeutQ3", "UpQ3" } },
|
---|
| 24 | { "SBF+FRQ", new HashSet<string>() { "Sharpness", "Bumpiness", "Flatness", "DownQ2", "NeutQ2", "UpQ2", "DownQ1", "NeutQ1", "UpQ1", "DownQ3", "NeutQ3", "UpQ3" } },
|
---|
| 25 | { "RUG", new HashSet<string>() { "AutoCorrelation1", "CorrelationLength" } },
|
---|
| 26 | { "IAL", new HashSet<string>() { "InformationContent", "DensityBasinInformation", "PartialInformationContent", "Regularity", "TotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation" } },
|
---|
| 27 | { "RUG+IAL", new HashSet<string>() { "AutoCorrelation1", "CorrelationLength", "InformationContent", "DensityBasinInformation", "PartialInformationContent", "Regularity", "TotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation" } },
|
---|
| 28 | { "SBF+IAL", new HashSet<string>() { "Sharpness", "Bumpiness", "Flatness", "InformationContent", "DensityBasinInformation", "PartialInformationContent", "Regularity", "TotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation" } },
|
---|
| 29 | { "FRQ+IAL", new HashSet<string>() { "DownQ2", "NeutQ2", "UpQ2", "DownQ1", "NeutQ1", "UpQ1", "DownQ3", "NeutQ3", "UpQ3", "InformationContent", "DensityBasinInformation", "PartialInformationContent", "Regularity", "TotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation" } },
|
---|
| 30 | { "SBF+FRQ+IAL", new HashSet<string>() { "Sharpness", "Bumpiness", "Flatness", "DownQ2", "NeutQ2", "UpQ2", "DownQ1", "NeutQ1", "UpQ1", "DownQ3", "NeutQ3", "UpQ3", "InformationContent", "DensityBasinInformation", "PartialInformationContent", "Regularity", "TotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation" } },
|
---|
| 31 | { "SBF+FRQ+RUG+IAL", new HashSet<string>() { "Sharpness", "Bumpiness", "Flatness", "DownQ2", "NeutQ2", "UpQ2", "DownQ1", "NeutQ1", "UpQ1", "DownQ3", "NeutQ3", "UpQ3", "AutoCorrelation1", "CorrelationLength", "InformationContent", "DensityBasinInformation", "PartialInformationContent", "Regularity", "TotalEntropy", "PeakInformationContent", "PeakDensityBasinInformation" } },
|
---|
[14691] | 32 | };
|
---|
[15031] | 33 |
|
---|
[16096] | 34 | var dwTypes = new Dictionary<string, QAPDirectedWalk.WalkType> {
|
---|
| 35 | { "(rr)-dw", QAPDirectedWalk.WalkType.RandomRandom },
|
---|
| 36 | { "(rl)-dw", QAPDirectedWalk.WalkType.RandomLocal },
|
---|
| 37 | { "(ll)-dw", QAPDirectedWalk.WalkType.LocalLocal },
|
---|
| 38 | { "(li)-dw", QAPDirectedWalk.WalkType.LocalInverse }
|
---|
[14691] | 39 | };
|
---|
[15031] | 40 |
|
---|
[16096] | 41 | var dwPaths = new List<int> { 1, 2, 5, 10, 20, 50, 100, 200, 500 };
|
---|
[14691] | 42 |
|
---|
[16096] | 43 | var random = new Random();
|
---|
| 44 | using (var writer = File.CreateText("results.csv")) {
|
---|
| 45 | writer.AutoFlush = true;
|
---|
[16129] | 46 | var header = string.Format("{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}\t{7}\t{8}\t{9}\t{10}\t{11}\t{12}",
|
---|
| 47 | "Rep", "Dimension", "FSet", "Type", "TrainEff", "TestEff", "ExCnt", "ExRnk", "ClsCnt", "ClsRnk", "TotCnt", "TrainEff2", "TestEff2");
|
---|
[16096] | 48 | writer.WriteLine(header);
|
---|
| 49 | Console.WriteLine(header);
|
---|
| 50 | foreach (var dim in new[] { 20, 30, 40, 50, 100 }) {
|
---|
| 51 | foreach (var feat in dwFeatureSets) {
|
---|
| 52 | foreach (var type in dwTypes) {
|
---|
| 53 | for (var rep = 0; rep < 10; rep++) {
|
---|
| 54 | var instances = GetSomeRandomInstances(dimension: dim, totalInstances: 20, seed: random.Next());
|
---|
| 55 |
|
---|
| 56 | var explorers = from p in dwPaths
|
---|
[16129] | 57 | select new PathRelinkingExplorer() { Features = feat.Value, Paths = p, Type = type.Value, BestImprovement = false };
|
---|
| 58 | ExploreMatching(writer, instances, explorers.ToArray(), explorers.ToArray(), string.Format("{0}\t{1}\t{2}\t{3}", rep, dim, feat.Key, type.Key));
|
---|
[16096] | 59 | }
|
---|
| 60 | }
|
---|
| 61 | }
|
---|
| 62 | }
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 |
|
---|
| 66 | //var training = GenerateData(instances, rrDwExplorer, parallel: true);
|
---|
[15031] | 67 | //var standardizer = InstancesStandardizer.CreateAndApply(training);
|
---|
[16096] | 68 | //var test = GenerateData(instances, rrDwExplorer, parallel: true);
|
---|
[15031] | 69 | //standardizer.Apply(test);
|
---|
| 70 | //PrintMatchResult(Compare(training, test));
|
---|
[14691] | 71 |
|
---|
[15031] | 72 | //Console.WriteLine("=== Path Relinking Walk ===");
|
---|
| 73 | //ExploreMatching(instances,
|
---|
| 74 | //new[] { 1, 5, 10, 20, 50, 100, 200 }.Select(x => new PathRelinkingExplorer() { LocalOptima = false, Paths = x }).ToArray(),
|
---|
| 75 | //new[] { 1, 5, 10, 20, 50, 100, 200 }.Select(x => new PathRelinkingExplorer() { LocalOptima = false, Paths = x }).ToArray(),
|
---|
| 76 | //parallel: true);
|
---|
| 77 | //Console.WriteLine("=== Random Walk ===");
|
---|
| 78 | //ExploreMatching(instances,
|
---|
| 79 | //new[] { 300, 1500, 3000, 6000, 15000, 30000, 60000 }.Select(x => new RandomWalkExplorer() { Iterations = x }).ToArray(),
|
---|
| 80 | //new[] { 300, 1500, 3000, 6000, 15000, 30000, 60000 }.Select(x => new RandomWalkExplorer() { Iterations = x }).ToArray(),
|
---|
| 81 | //parallel: true);
|
---|
| 82 | //Console.WriteLine("=== Adaptive Walk ===");
|
---|
| 83 | //ExploreMatching(instances,
|
---|
| 84 | //new[] { 300, 1500, 3000, 6000, 15000, 30000, 60000 }.Select(x => new AdaptiveWalkExplorer() { Iterations = x / 10, SampleSize = 10 }).ToArray(),
|
---|
| 85 | //new[] { 300, 1500, 3000, 6000, 15000, 30000, 60000 }.Select(x => new AdaptiveWalkExplorer() { Iterations = x / 10, SampleSize = 10 }).ToArray(),
|
---|
| 86 | //parallel: true);
|
---|
[16096] | 87 | //Console.WriteLine("=== Up/Down Walk ===");
|
---|
| 88 | //ExploreMatching(instances,
|
---|
| 89 | //new[] { 300, 1500, 3000, 6000, 15000, 30000, 60000 }.Select(x => new UpDownWalkExplorer() { Iterations = x / 10, SampleSize = 10 }).ToArray(),
|
---|
| 90 | //new[] { 300, 1500, 3000, 6000, 15000, 30000, 60000 }.Select(x => new UpDownWalkExplorer() { Iterations = x / 10, SampleSize = 10 }).ToArray(),
|
---|
| 91 | //parallel: true);
|
---|
[14691] | 92 | }
|
---|
| 93 |
|
---|
[16096] | 94 | private static List<QuadraticAssignmentProblem> GetSomeRandomInstances(int dimension, int totalInstances, int seed) {
|
---|
[14678] | 95 | var sync = new object();
|
---|
[16096] | 96 | var provider = new OneSizeInstanceProvider(dimension);
|
---|
[14691] | 97 | var instances = new List<QuadraticAssignmentProblem>();
|
---|
[15031] | 98 | var random = new FastRandom(seed);
|
---|
[14691] | 99 | Parallel.ForEach(provider.GetDataDescriptors().Shuffle(random), desc => {
|
---|
| 100 | var qapData = provider.LoadData(desc);
|
---|
| 101 | if (instances.Count >= totalInstances) return;
|
---|
| 102 | var qap = new QuadraticAssignmentProblem();
|
---|
| 103 | qap.Load(qapData);
|
---|
| 104 | lock (sync) {
|
---|
| 105 | if (instances.Count >= totalInstances) return;
|
---|
| 106 | instances.Add(qap);
|
---|
| 107 | }
|
---|
| 108 | });
|
---|
| 109 | return instances;
|
---|
| 110 | }
|
---|
[14678] | 111 |
|
---|
[14691] | 112 | private static List<InstanceDescriptor> GenerateData(List<QuadraticAssignmentProblem> instances, InstanceExplorer explorer, bool parallel = false) {
|
---|
[14690] | 113 | var sync = new object();
|
---|
[14691] | 114 | var data = new List<InstanceDescriptor>();
|
---|
| 115 | Action<QuadraticAssignmentProblem> body = (qap) => {
|
---|
[14690] | 116 | var instance = explorer.Explore(qap);
|
---|
[14691] | 117 | if (instance == null) return;
|
---|
[14690] | 118 | lock (sync) {
|
---|
[14691] | 119 | data.Add(instance);
|
---|
[14690] | 120 | }
|
---|
[14691] | 121 | };
|
---|
| 122 | if (parallel) {
|
---|
[15031] | 123 | Parallel.ForEach(instances.Select(x => (QuadraticAssignmentProblem)x.Clone()), body);
|
---|
[14691] | 124 | } else {
|
---|
| 125 | foreach (var qap in instances) body(qap);
|
---|
[14690] | 126 | }
|
---|
[14691] | 127 | return data;
|
---|
[14690] | 128 | }
|
---|
| 129 |
|
---|
[14691] | 130 | private static MatchResult Compare(List<InstanceDescriptor> training, List<InstanceDescriptor> test) {
|
---|
| 131 | int exactCount = 0, clsCount = 0, totalCount = 0;
|
---|
| 132 | int exactRank = 0, clsRank = 0;
|
---|
| 133 | foreach (var e in test) {
|
---|
| 134 | var ordered = training.OrderBy(x => x.CalculateSimilarity(e)).ToList();
|
---|
| 135 | var bestMatch = ordered.First();
|
---|
| 136 | if (bestMatch.Cls == e.Cls) clsCount++;
|
---|
| 137 | if (bestMatch.Name == e.Name) exactCount++;
|
---|
[14696] | 138 | var r = ordered.FindIndex((id) => id.Name == e.Name);
|
---|
| 139 | if (r < 0) continue;
|
---|
[14691] | 140 | totalCount++;
|
---|
[14696] | 141 | exactRank += r + 1;
|
---|
[14691] | 142 | clsRank += ordered.FindIndex((id) => id.Cls == e.Cls) + 1;
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | return new MatchResult() {
|
---|
| 146 | ExactCount = exactCount,
|
---|
| 147 | ClsCount = clsCount,
|
---|
| 148 | TotalCount = totalCount,
|
---|
| 149 | ExactAverageRank = exactRank / (double)totalCount,
|
---|
[16096] | 150 | ClsAverageRank = clsRank / (double)totalCount,
|
---|
| 151 | TrainingDescriptionEffort = training.Average(x => x.DescriptionEffort),
|
---|
| 152 | TestDescriptionEffort = test.Average(x => x.DescriptionEffort)
|
---|
[14691] | 153 | };
|
---|
| 154 | }
|
---|
| 155 |
|
---|
| 156 | private static void PrintData(List<InstanceDescriptor> instances) {
|
---|
| 157 | using (var iter = instances.GetEnumerator()) {
|
---|
| 158 | if (!iter.MoveNext()) return;
|
---|
[16096] | 159 | Console.WriteLine(string.Join(";", new[] {"Name", "Cls", "Dimension", "Effort"}
|
---|
[14691] | 160 | .Concat(iter.Current != null ? iter.Current.FeatureNames : new [] { "(null)" })));
|
---|
| 161 | do {
|
---|
| 162 | PrintInstanceLine(iter.Current);
|
---|
| 163 | } while (iter.MoveNext());
|
---|
| 164 | }
|
---|
| 165 | }
|
---|
| 166 |
|
---|
[14690] | 167 | private static void PrintInstanceLine(InstanceDescriptor instance) {
|
---|
| 168 | Console.WriteLine(string.Join(";",
|
---|
[16096] | 169 | new[] {instance.Name, instance.Cls, instance.Dimension.ToString(CultureInfo.CurrentCulture), instance.DescriptionEffort.ToString(CultureInfo.CurrentCulture)}
|
---|
[14690] | 170 | .Concat(instance.FeatureValues.Select(x => x.ToString(CultureInfo.CurrentCulture)))));
|
---|
| 171 | }
|
---|
| 172 |
|
---|
[16096] | 173 | private static void ExploreMatching(StreamWriter writer, List<QuadraticAssignmentProblem> instances, InstanceExplorer[] trainingExplorers, InstanceExplorer[] testExporers, string info, bool parallel = false) {
|
---|
[14690] | 174 | var sync = new object();
|
---|
[14691] | 175 |
|
---|
| 176 | var knowledgeBase = new Dictionary<InstanceExplorer, Tuple<InstancesStandardizer, List<InstanceDescriptor>>>();
|
---|
| 177 | Action<InstanceExplorer> trainingBody = (kbExplorer) => {
|
---|
| 178 | var trainingData = GenerateData(instances, kbExplorer, parallel);
|
---|
| 179 | var standardizer = InstancesStandardizer.Create(trainingData);
|
---|
| 180 | standardizer.Apply(trainingData);
|
---|
| 181 | lock (sync) {
|
---|
| 182 | knowledgeBase.Add(kbExplorer, Tuple.Create(standardizer, trainingData));
|
---|
| 183 | }
|
---|
| 184 | };
|
---|
| 185 | if (parallel) {
|
---|
| 186 | Parallel.ForEach(trainingExplorers, trainingBody);
|
---|
| 187 | } else {
|
---|
| 188 | foreach (var kbExplorer in trainingExplorers) trainingBody(kbExplorer);
|
---|
[14690] | 189 | }
|
---|
[14691] | 190 |
|
---|
| 191 | var experimentBase = new Dictionary<InstanceExplorer, List<InstanceDescriptor>>();
|
---|
| 192 | Action<InstanceExplorer> testBody = (expExplorer) => {
|
---|
[14696] | 193 | var testData = GenerateData(instances, expExplorer, parallel);
|
---|
[14691] | 194 | lock (sync) {
|
---|
[14696] | 195 | experimentBase.Add(expExplorer, testData);
|
---|
[14691] | 196 | }
|
---|
| 197 | };
|
---|
| 198 | if (parallel) {
|
---|
| 199 | Parallel.ForEach(testExporers, testBody);
|
---|
| 200 | } else {
|
---|
| 201 | foreach (var expExplorer in testExporers) testBody(expExplorer);
|
---|
| 202 | }
|
---|
| 203 |
|
---|
| 204 | var data = from kb in knowledgeBase
|
---|
| 205 | from exp in experimentBase
|
---|
| 206 | select new { Training = kb, Test = exp };
|
---|
| 207 |
|
---|
| 208 | if (parallel) {
|
---|
| 209 | Parallel.ForEach(data, (point) => {
|
---|
| 210 | var normalizedTest = point.Test.Value.Select(x => new InstanceDescriptor(x)).ToList();
|
---|
| 211 | point.Training.Value.Item1.Apply(normalizedTest);
|
---|
| 212 | var result = Compare(point.Training.Value.Item2, normalizedTest);
|
---|
| 213 | lock (sync) {
|
---|
[16096] | 214 | string output = string.Format("{0}\t{1}\t{2}\t{3:F2}\t{4}\t{5:F2}\t{6}\t{7}\t{8}\t{9}",
|
---|
| 215 | info, point.Training.Key.Effort, point.Test.Key.Effort, result.ExactCount,
|
---|
| 216 | result.ExactAverageRank, result.ClsCount, result.ClsAverageRank, result.TotalCount,
|
---|
| 217 | result.TrainingDescriptionEffort, result.TestDescriptionEffort);
|
---|
| 218 | writer.WriteLine(output);
|
---|
| 219 | Console.WriteLine(output);
|
---|
[14678] | 220 | }
|
---|
| 221 | });
|
---|
[14691] | 222 | } else {
|
---|
| 223 | foreach (var point in data) {
|
---|
| 224 | var normalizedTest = point.Test.Value.Select(x => new InstanceDescriptor(x)).ToList();
|
---|
| 225 | point.Training.Value.Item1.Apply(normalizedTest);
|
---|
| 226 | var result = Compare(point.Training.Value.Item2, normalizedTest);
|
---|
[16096] | 227 | string output = string.Format("{0}\t{1}\t{2}\t{3:F2}\t{4}\t{5:F2}\t{6}\t{7}\t{8}\t{9}",
|
---|
| 228 | info, point.Training.Key.Effort, point.Test.Key.Effort, result.ExactCount,
|
---|
| 229 | result.ExactAverageRank, result.ClsCount, result.ClsAverageRank, result.TotalCount,
|
---|
| 230 | result.TrainingDescriptionEffort, result.TestDescriptionEffort);
|
---|
| 231 | writer.WriteLine(output);
|
---|
| 232 | Console.WriteLine(output);
|
---|
[14691] | 233 | }
|
---|
[14678] | 234 | }
|
---|
| 235 | }
|
---|
[14691] | 236 |
|
---|
| 237 | private class MatchResult {
|
---|
| 238 | public int ExactCount { get; set; }
|
---|
| 239 | public int ClsCount { get; set; }
|
---|
| 240 | public int TotalCount { get; set; }
|
---|
| 241 | public double ExactAverageRank { get; set; }
|
---|
| 242 | public double ClsAverageRank { get; set; }
|
---|
[16096] | 243 |
|
---|
| 244 | public double TrainingDescriptionEffort { get; set; }
|
---|
| 245 | public double TestDescriptionEffort { get; set; }
|
---|
[14691] | 246 | }
|
---|
[14678] | 247 | }
|
---|
| 248 | }
|
---|