1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using System.Text.RegularExpressions;
|
---|
5 | using HeuristicLab.Common;
|
---|
6 |
|
---|
7 | namespace HeuristicLab.Problems.Instances.QAPLIB {
|
---|
8 | public class OneSize10InstanceProvider : OneSizeInstanceProvider {
|
---|
9 | public OneSize10InstanceProvider() : base(10) { }
|
---|
10 | }
|
---|
11 | public class OneSize25InstanceProvider : OneSizeInstanceProvider {
|
---|
12 | public OneSize25InstanceProvider() : base(25) { }
|
---|
13 | }
|
---|
14 | public class OneSize50InstanceProvider : OneSizeInstanceProvider {
|
---|
15 | public OneSize50InstanceProvider() : base(50) { }
|
---|
16 | }
|
---|
17 | public class OneSize100InstanceProvider : OneSizeInstanceProvider {
|
---|
18 | public OneSize100InstanceProvider() : base(100) { }
|
---|
19 | }
|
---|
20 |
|
---|
21 | public class OneSizeInstanceProvider : ProblemInstanceProvider<QAPData> {
|
---|
22 | public override string Name { get { return "One Size (n = " + Dimension + ")"; } }
|
---|
23 | public override string Description { get { return "Instances from various libraries reduced to a dimension of " + Dimension + "."; } }
|
---|
24 | public override Uri WebLink { get { return null; } }
|
---|
25 | public override string ReferencePublication {
|
---|
26 | get {
|
---|
27 | return
|
---|
28 | @"A. Beham, E. Pitzer, S. Wagner, M. Affenzeller. 2017.
|
---|
29 | Integrating Exploratory Landscape Analysis into Metaheuristic Algorithms.
|
---|
30 | Lecture Notes in Computer Science 10671, Las Palmas de Gran Canaria, Spanien, pp. 473-480";
|
---|
31 | }
|
---|
32 | }
|
---|
33 |
|
---|
34 | public int Dimension { get; private set; }
|
---|
35 |
|
---|
36 | public OneSizeInstanceProvider(int dimension) {
|
---|
37 | Dimension = dimension;
|
---|
38 | }
|
---|
39 |
|
---|
40 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
41 | var drezner = new DreznerQAPInstanceProvider();
|
---|
42 | foreach (var desc in drezner.GetDataDescriptors()) {
|
---|
43 | var dim = int.Parse(Regex.Match(desc.Name, "dre(?<g>\\d+)").Groups["g"].Value);
|
---|
44 | if (dim < Dimension) continue;
|
---|
45 | yield return new OneSizeDataDescriptor(desc.Name + (dim == Dimension ? "" : "-" + Dimension), desc.Description, drezner, desc);
|
---|
46 | }
|
---|
47 | // Microarray instances are all greater than 25 dimensions
|
---|
48 | var microarray = new MicroarrayQAPInstanceProvider();
|
---|
49 | foreach (var desc in microarray.GetDataDescriptors()) {
|
---|
50 | var instance = microarray.LoadData(desc);
|
---|
51 | if (instance.Dimension < Dimension) continue;
|
---|
52 | yield return new OneSizeDataDescriptor(desc.Name + (instance.Dimension == Dimension ? "" : "-" + Dimension), desc.Description, microarray, desc);
|
---|
53 | }
|
---|
54 | var qaplib = new QAPLIBInstanceProvider();
|
---|
55 | foreach (var desc in qaplib.GetDataDescriptors()) {
|
---|
56 | var instance = qaplib.LoadData(desc);
|
---|
57 | if (instance.Dimension < Dimension) continue;
|
---|
58 | yield return new OneSizeDataDescriptor(desc.Name + (instance.Dimension == Dimension ? "" : "-" + Dimension), desc.Description, qaplib, desc);
|
---|
59 | }
|
---|
60 | // Taillard's instances are basically from the same distribution
|
---|
61 | // to avoid over-representation in the set only the tai27e are taken and reduced to 25 dimension
|
---|
62 | var taillard = new TaillardQAPInstanceProvider();
|
---|
63 | var count = 0;
|
---|
64 | foreach (var desc in taillard.GetDataDescriptors().OrderBy(x => x.Name, new NaturalStringComparer())) {
|
---|
65 | var dim = int.Parse(Regex.Match(desc.Name, "tai(?<g>\\d+)e").Groups["g"].Value);
|
---|
66 | if (dim < Dimension) continue;
|
---|
67 | yield return new OneSizeDataDescriptor(desc.Name + (dim == Dimension ? "" : "-" + Dimension), desc.Description, taillard, desc);
|
---|
68 | if (++count == 10) break;
|
---|
69 | }
|
---|
70 | }
|
---|
71 |
|
---|
72 | public override QAPData LoadData(IDataDescriptor descriptor) {
|
---|
73 | var desc = (OneSizeDataDescriptor)descriptor;
|
---|
74 | var data = desc.ActualProvider.LoadData(desc.ActualDescriptor);
|
---|
75 |
|
---|
76 | if (data.Dimension <= Dimension) {
|
---|
77 | return data;
|
---|
78 | }
|
---|
79 | var rand = new Random(data.Dimension);
|
---|
80 |
|
---|
81 | var tmp = Enumerable.Range(0, data.Dimension).ToArray();
|
---|
82 | Shuffle(tmp, rand);
|
---|
83 | var throwAway = new bool[data.Dimension];
|
---|
84 | foreach (var t in tmp.Take(data.Dimension - Dimension))
|
---|
85 | throwAway[t] = true;
|
---|
86 |
|
---|
87 | var weights = new double[Dimension, Dimension];
|
---|
88 | var distances = new double[Dimension, Dimension];
|
---|
89 | var k = 0;
|
---|
90 | for (var i = 0; i < data.Dimension; i++) {
|
---|
91 | if (throwAway[i]) continue;
|
---|
92 | var h = 0;
|
---|
93 | for (var j = 0; j < data.Dimension; j++) {
|
---|
94 | if (throwAway[j]) continue;
|
---|
95 | weights[k, h] = data.Weights[i, j];
|
---|
96 | distances[k, h] = data.Distances[i, j];
|
---|
97 | h++;
|
---|
98 | }
|
---|
99 | k++;
|
---|
100 | }
|
---|
101 |
|
---|
102 | data.Weights = weights;
|
---|
103 | data.Distances = distances;
|
---|
104 | data.BestKnownAssignment = null;
|
---|
105 | data.BestKnownQuality = null;
|
---|
106 | data.Dimension = Dimension;
|
---|
107 | data.Name += "-" + Dimension;
|
---|
108 | data.Description += " (reduced to " + Dimension + " dimensions)";
|
---|
109 |
|
---|
110 | return data;
|
---|
111 | }
|
---|
112 |
|
---|
113 | private static void Shuffle(int[] p, Random random) {
|
---|
114 | for (var i = p.Length - 1; i > 0; i--) {
|
---|
115 | var swapIndex = random.Next(i + 1);
|
---|
116 | var h = p[swapIndex];
|
---|
117 | p[swapIndex] = p[i];
|
---|
118 | p[i] = h;
|
---|
119 | }
|
---|
120 | }
|
---|
121 | }
|
---|
122 | }
|
---|