1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Analysis;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using System;
|
---|
29 | using System.Collections.Generic;
|
---|
30 | using System.Linq;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.OptimizationExpertSystem.Common {
|
---|
33 | [Item("Overall Best Recommender", "")]
|
---|
34 | [StorableClass]
|
---|
35 | public class OverallBestRecommender : ParameterizedNamedItem, IAlgorithmInstanceRecommender {
|
---|
36 |
|
---|
37 | private IFixedValueParameter<DoubleValue> NeighborhoodFactorParameter {
|
---|
38 | get { return (IFixedValueParameter<DoubleValue>)Parameters["NeighborhoodFactor"]; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | [StorableConstructor]
|
---|
42 | private OverallBestRecommender(bool deserializing) : base(deserializing) { }
|
---|
43 | private OverallBestRecommender(OverallBestRecommender original, Cloner cloner) : base(original, cloner) { }
|
---|
44 | public OverallBestRecommender() { }
|
---|
45 |
|
---|
46 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
47 | return new OverallBestRecommender(this, cloner);
|
---|
48 | }
|
---|
49 |
|
---|
50 | public IRecommendationModel TrainModel(IRun[] problemInstances, KnowledgeCenter kc, string[] characteristics) {
|
---|
51 | var instances = new List<KeyValuePair<IAlgorithm, double>>();
|
---|
52 | foreach (var relevantRuns in kc.GetKnowledgeBaseByAlgorithm()) {
|
---|
53 | var algorithm = relevantRuns.Key;
|
---|
54 | var pis = relevantRuns.Value.Select(x => ((StringValue)x.Parameters["Problem Name"]).Value).Distinct()
|
---|
55 | .Select(x => Tuple.Create(x, problemInstances.SingleOrDefault(y => ((StringValue)y.Parameters["Problem Name"]).Value == x)))
|
---|
56 | .Where(x => x.Item2 != null)
|
---|
57 | .Select(x => Tuple.Create(x.Item1, ((DoubleValue)x.Item2.Parameters["BestKnownQuality"]).Value))
|
---|
58 | .ToDictionary(x => x.Item1, x => x.Item2);
|
---|
59 | var avgERT = 0.0;
|
---|
60 | var count = 0;
|
---|
61 | foreach (var problemRuns in relevantRuns.Value.GroupBy(x => ((StringValue)x.Parameters["Problem Name"]).Value)) {
|
---|
62 | double bkq;
|
---|
63 | if (!pis.TryGetValue(problemRuns.Key, out bkq)) continue;
|
---|
64 | var ert = ExpectedRuntimeHelper.CalculateErt(problemRuns.ToList(), "QualityPerEvaluations", kc.GetTarget(bkq, kc.MinimumTarget.Value, kc.Maximization), kc.Maximization).ExpectedRuntime;
|
---|
65 | if (double.IsInfinity(ert)) ert = int.MaxValue;
|
---|
66 | avgERT += ert;
|
---|
67 | count++;
|
---|
68 | }
|
---|
69 | avgERT /= count;
|
---|
70 | instances.Add(new KeyValuePair<IAlgorithm, double>(algorithm, avgERT));
|
---|
71 | }
|
---|
72 |
|
---|
73 | return new FixedRankModel(instances.OrderBy(x => x.Value));
|
---|
74 | }
|
---|
75 | }
|
---|
76 | }
|
---|