[12842] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[13667] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[12842] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[16958] | 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Drawing;
|
---|
| 25 | using System.IO;
|
---|
[17175] | 26 | using System.IO.Compression;
|
---|
[16958] | 27 | using System.Linq;
|
---|
| 28 | using System.Threading;
|
---|
| 29 | using System.Threading.Tasks;
|
---|
[17175] | 30 | using HEAL.Attic;
|
---|
[16958] | 31 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
[12860] | 32 | using HeuristicLab.Analysis;
|
---|
[13750] | 33 | using HeuristicLab.Analysis.SelfOrganizingMaps;
|
---|
[13551] | 34 | using HeuristicLab.Collections;
|
---|
[13485] | 35 | using HeuristicLab.Common;
|
---|
| 36 | using HeuristicLab.Common.Resources;
|
---|
[12842] | 37 | using HeuristicLab.Core;
|
---|
[13485] | 38 | using HeuristicLab.Data;
|
---|
| 39 | using HeuristicLab.MainForm;
|
---|
[12842] | 40 | using HeuristicLab.Optimization;
|
---|
[13485] | 41 | using HeuristicLab.Persistence.Default.Xml;
|
---|
[13774] | 42 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[13750] | 43 | using HeuristicLab.Random;
|
---|
[13809] | 44 | using Algorithm = HeuristicLab.Clients.OKB.Administration.Algorithm;
|
---|
| 45 | using Problem = HeuristicLab.Clients.OKB.Administration.Problem;
|
---|
[13551] | 46 | using RunCreationClient = HeuristicLab.Clients.OKB.RunCreation.RunCreationClient;
|
---|
| 47 | using SingleObjectiveOKBProblem = HeuristicLab.Clients.OKB.RunCreation.SingleObjectiveOKBProblem;
|
---|
[13713] | 48 | using SingleObjectiveOKBSolution = HeuristicLab.Clients.OKB.RunCreation.SingleObjectiveOKBSolution;
|
---|
[12842] | 49 |
|
---|
[13663] | 50 | namespace HeuristicLab.OptimizationExpertSystem.Common {
|
---|
[13722] | 51 | [Item("Knowledge Center", "Currently in experimental phase, an expert system that makes algorithm suggestions based on fitness landscape analysis features and an optimization knowledge base.")]
|
---|
[12860] | 52 | [Creatable(CreatableAttribute.Categories.TestingAndAnalysis, Priority = 119)]
|
---|
[13722] | 53 | public sealed class KnowledgeCenter : IContent {
|
---|
[13752] | 54 | private bool SuppressEvents { get; set; }
|
---|
[12842] | 55 |
|
---|
| 56 | public string Filename { get; set; }
|
---|
| 57 |
|
---|
[13774] | 58 | public static Image StaticItemImage {
|
---|
[12842] | 59 | get { return VSImageLibrary.Library; }
|
---|
| 60 | }
|
---|
| 61 |
|
---|
[13751] | 62 | private readonly IntValue maximumEvaluations;
|
---|
[13722] | 63 | public IntValue MaximumEvaluations {
|
---|
[12847] | 64 | get { return maximumEvaluations; }
|
---|
| 65 | }
|
---|
| 66 |
|
---|
[13757] | 67 | private readonly DoubleValue minimumTarget;
|
---|
| 68 | public DoubleValue MinimumTarget {
|
---|
| 69 | get { return minimumTarget; }
|
---|
| 70 | }
|
---|
| 71 |
|
---|
[13751] | 72 | private readonly RunCollection instanceRuns;
|
---|
[13722] | 73 | public RunCollection InstanceRuns {
|
---|
| 74 | get { return instanceRuns; }
|
---|
[12842] | 75 | }
|
---|
| 76 |
|
---|
[13751] | 77 | private readonly RunCollection seededRuns;
|
---|
[13722] | 78 | public RunCollection SeededRuns {
|
---|
| 79 | get { return seededRuns; }
|
---|
| 80 | }
|
---|
| 81 |
|
---|
[13751] | 82 | private readonly RunCollection knowledgeBase;
|
---|
[13551] | 83 | public RunCollection KnowledgeBase {
|
---|
| 84 | get { return knowledgeBase; }
|
---|
[12842] | 85 | }
|
---|
| 86 |
|
---|
[13751] | 87 | private readonly SingleObjectiveOKBProblem problem;
|
---|
[13551] | 88 | public SingleObjectiveOKBProblem Problem {
|
---|
[12842] | 89 | get { return problem; }
|
---|
| 90 | }
|
---|
| 91 |
|
---|
[13774] | 92 | private readonly ItemList<IAlgorithm> algorithmInstances;
|
---|
| 93 | private readonly ReadOnlyItemList<IAlgorithm> readonlyAlgorithmInstances;
|
---|
| 94 | public ReadOnlyItemList<IAlgorithm> AlgorithmInstances {
|
---|
| 95 | get { return readonlyAlgorithmInstances; }
|
---|
[12847] | 96 | }
|
---|
| 97 |
|
---|
[13751] | 98 | private readonly RunCollection problemInstances;
|
---|
[12957] | 99 | public RunCollection ProblemInstances {
|
---|
| 100 | get { return problemInstances; }
|
---|
| 101 | }
|
---|
| 102 |
|
---|
[13787] | 103 | private IRecommendationModel recommendationModel;
|
---|
| 104 | public IRecommendationModel RecommendationModel {
|
---|
| 105 | get { return recommendationModel; }
|
---|
| 106 | set {
|
---|
| 107 | if (recommendationModel == value) return;
|
---|
| 108 | recommendationModel = value;
|
---|
| 109 | OnRecommenderModelChanged();
|
---|
| 110 | }
|
---|
[13757] | 111 | }
|
---|
[13751] | 112 |
|
---|
| 113 | private readonly CheckedItemList<IScope> solutionSeedingPool;
|
---|
[13713] | 114 | public CheckedItemList<IScope> SolutionSeedingPool {
|
---|
| 115 | get { return solutionSeedingPool; }
|
---|
[13663] | 116 | }
|
---|
[13713] | 117 |
|
---|
[13751] | 118 | private readonly EnumValue<SeedingStrategyTypes> seedingStrategy;
|
---|
[13713] | 119 | public EnumValue<SeedingStrategyTypes> SeedingStrategy {
|
---|
| 120 | get { return seedingStrategy; }
|
---|
| 121 | }
|
---|
[13663] | 122 |
|
---|
[13551] | 123 | private BidirectionalLookup<long, IRun> algorithmId2RunMapping;
|
---|
| 124 | private BidirectionalDictionary<long, IAlgorithm> algorithmId2AlgorithmInstanceMapping;
|
---|
[13751] | 125 | private BidirectionalDictionary<long, IRun> problemId2ProblemInstanceMapping;
|
---|
| 126 |
|
---|
[13774] | 127 | public bool Maximization {
|
---|
[13722] | 128 | get { return Problem != null && Problem.ProblemId >= 0 && ((IValueParameter<BoolValue>)Problem.MaximizationParameter).Value.Value; }
|
---|
[12842] | 129 | }
|
---|
| 130 |
|
---|
[13722] | 131 | public KnowledgeCenter() {
|
---|
[13748] | 132 | maximumEvaluations = new IntValue(10000);
|
---|
[13759] | 133 | minimumTarget = new DoubleValue(0.05);
|
---|
[13722] | 134 | instanceRuns = new RunCollection();
|
---|
[13748] | 135 | seededRuns = new RunCollection();
|
---|
[13551] | 136 | knowledgeBase = new RunCollection();
|
---|
[13774] | 137 | algorithmInstances = new ItemList<IAlgorithm>();
|
---|
| 138 | readonlyAlgorithmInstances = algorithmInstances.AsReadOnly();
|
---|
[12957] | 139 | problemInstances = new RunCollection();
|
---|
[13787] | 140 | recommendationModel = FixedRankModel.GetEmpty();
|
---|
[13551] | 141 | problem = new SingleObjectiveOKBProblem();
|
---|
| 142 | algorithmId2RunMapping = new BidirectionalLookup<long, IRun>();
|
---|
| 143 | algorithmId2AlgorithmInstanceMapping = new BidirectionalDictionary<long, IAlgorithm>();
|
---|
[13751] | 144 | problemId2ProblemInstanceMapping = new BidirectionalDictionary<long, IRun>();
|
---|
[13713] | 145 | solutionSeedingPool = new CheckedItemList<IScope>();
|
---|
| 146 | seedingStrategy = new EnumValue<SeedingStrategyTypes>(SeedingStrategyTypes.NoSeeding);
|
---|
[12860] | 147 | RegisterEventHandlers();
|
---|
[12842] | 148 | }
|
---|
| 149 |
|
---|
[13551] | 150 | private void ProblemOnProblemChanged(object sender, EventArgs eventArgs) {
|
---|
[13748] | 151 | // TODO: Potentially, knowledge base has to be re-downloaded
|
---|
[13551] | 152 | }
|
---|
| 153 |
|
---|
[12860] | 154 | private void RegisterEventHandlers() {
|
---|
[13722] | 155 | maximumEvaluations.ValueChanged += MaximumEvaluationsOnValueChanged;
|
---|
[13757] | 156 | minimumTarget.ValueChanged += MinimumTargetOnValueChanged;
|
---|
[13551] | 157 | problem.ProblemChanged += ProblemOnProblemChanged;
|
---|
[13713] | 158 | problem.Solutions.ItemsAdded += ProblemSolutionsChanged;
|
---|
| 159 | problem.Solutions.ItemsReplaced += ProblemSolutionsChanged;
|
---|
| 160 | problem.Solutions.ItemsRemoved += ProblemSolutionsChanged;
|
---|
| 161 | problem.Solutions.CollectionReset += ProblemSolutionsChanged;
|
---|
[13722] | 162 | instanceRuns.CollectionReset += InformationChanged;
|
---|
| 163 | instanceRuns.ItemsAdded += InformationChanged;
|
---|
| 164 | instanceRuns.ItemsRemoved += InformationChanged;
|
---|
| 165 | instanceRuns.Reset += InformationChanged;
|
---|
| 166 | instanceRuns.UpdateOfRunsInProgressChanged += InformationChanged;
|
---|
[13551] | 167 | knowledgeBase.CollectionReset += InformationChanged;
|
---|
| 168 | knowledgeBase.ItemsAdded += InformationChanged;
|
---|
| 169 | knowledgeBase.ItemsRemoved += InformationChanged;
|
---|
[12842] | 170 | }
|
---|
| 171 |
|
---|
[13722] | 172 | private void MaximumEvaluationsOnValueChanged(object sender, EventArgs eventArgs) {
|
---|
[13787] | 173 |
|
---|
[13722] | 174 | }
|
---|
| 175 |
|
---|
[13757] | 176 | private void MinimumTargetOnValueChanged(object sender, EventArgs e) {
|
---|
[13787] | 177 |
|
---|
[13757] | 178 | }
|
---|
| 179 |
|
---|
[13713] | 180 | private void ProblemSolutionsChanged(object sender, EventArgs e) {
|
---|
| 181 | foreach (var sol in Problem.Solutions.Select(x => x.Solution).OfType<IScope>()) {
|
---|
| 182 | if (!SolutionSeedingPool.Contains(sol))
|
---|
| 183 | SolutionSeedingPool.Add(sol, false);
|
---|
| 184 | }
|
---|
| 185 | }
|
---|
| 186 |
|
---|
[12860] | 187 | private void InformationChanged(object sender, EventArgs e) {
|
---|
| 188 | var runCollection = sender as RunCollection;
|
---|
| 189 | if (runCollection != null && runCollection.UpdateOfRunsInProgress) return;
|
---|
[12842] | 190 | }
|
---|
[13774] | 191 |
|
---|
[13751] | 192 | public bool IsCurrentInstance(IRun run) {
|
---|
| 193 | if (!problemId2ProblemInstanceMapping.ContainsSecond(run)) return false;
|
---|
| 194 | return problemId2ProblemInstanceMapping.GetBySecond(run) == Problem.ProblemId;
|
---|
| 195 | }
|
---|
[13561] | 196 |
|
---|
[13787] | 197 | public void UpdateInstanceProjection(string[] characteristics) {
|
---|
| 198 | if (characteristics.Length == 0) return;
|
---|
[13751] | 199 |
|
---|
[13787] | 200 | var instances = GetProblemCharacteristics(characteristics);
|
---|
[13718] | 201 |
|
---|
[13751] | 202 | var key2Idx = new BidirectionalDictionary<IRun, int>();
|
---|
[13561] | 203 | foreach (var kvp in instances.Select((k, i) => new { Index = i, Key = k.Key }))
|
---|
| 204 | key2Idx.Add(kvp.Key, kvp.Index);
|
---|
| 205 |
|
---|
[14776] | 206 | Func<double[], double[], double> euclid = (a, b) => Math.Sqrt(a.Zip(b, (x, y) => (x - y)).Sum(x => x * x));
|
---|
| 207 | Func<DoubleArray, DoubleArray, double> euclidDArray = (a, b) => Math.Sqrt(a.Zip(b, (x, y) => (x - y)).Sum(x => x * x));
|
---|
[13561] | 208 | #region MDS
|
---|
| 209 | var num = instances.Count;
|
---|
| 210 | var matrix = new DoubleMatrix(num, num);
|
---|
| 211 | for (var i = 0; i < num - 1; i++) {
|
---|
| 212 | for (var j = i + 1; j < num; j++) {
|
---|
| 213 | matrix[i, j] = matrix[j, i] = euclid(instances[key2Idx.GetBySecond(i)], instances[key2Idx.GetBySecond(j)]);
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 |
|
---|
| 217 | var coords = MultidimensionalScaling.KruskalShepard(matrix);
|
---|
| 218 | #endregion
|
---|
| 219 | #region PCA
|
---|
[13791] | 220 | double[,] v = null;
|
---|
[13787] | 221 | var ds = new double[instances.Count, characteristics.Length];
|
---|
[13791] | 222 | if (characteristics.Length > 1) {
|
---|
| 223 | foreach (var instance in instances) {
|
---|
| 224 | var arr = instance.Value;
|
---|
| 225 | for (var feature = 0; feature < arr.Length; feature++)
|
---|
| 226 | ds[key2Idx.GetByFirst(instance.Key), feature] = arr[feature];
|
---|
| 227 | }
|
---|
| 228 |
|
---|
| 229 | int info;
|
---|
| 230 | double[] s2;
|
---|
| 231 | alglib.pcabuildbasis(ds, ds.GetLength(0), ds.GetLength(1), out info, out s2, out v);
|
---|
[13561] | 232 | }
|
---|
| 233 | #endregion
|
---|
[13750] | 234 | #region SOM
|
---|
[13787] | 235 | var features = new DoubleMatrix(characteristics.Length, instances.Count);
|
---|
[13750] | 236 | foreach (var instance in instances) {
|
---|
| 237 | var arr = instance.Value;
|
---|
| 238 | for (var feature = 0; feature < arr.Length; feature++)
|
---|
| 239 | features[feature, key2Idx.GetByFirst(instance.Key)] = arr[feature];
|
---|
| 240 | }
|
---|
[13791] | 241 | var somCoords = SOM.Map(features, new MersenneTwister(42), somSize: 10, learningRadius: 20, iterations: 200, jittering: true);
|
---|
[13750] | 242 | #endregion
|
---|
[14667] | 243 | #region TSNE
|
---|
| 244 | var tsneFeatures = new DoubleArray[instances.Count];
|
---|
| 245 | foreach (var instance in instances) {
|
---|
| 246 | tsneFeatures[key2Idx.GetByFirst(instance.Key)] = new DoubleArray(instance.Value);
|
---|
| 247 | }
|
---|
[15255] | 248 | var tsneCoords = TSNEStatic<DoubleArray>.Run(tsneFeatures, new EuclideanDistance(), new FastRandom(42),
|
---|
| 249 | newDimensions: 2, perplexity: Math.Min((instances.Count - 1) / 4, 50), theta: 0,
|
---|
| 250 | stopLyingIter: 0, momSwitchIter: 0, momentum: 0, finalMomentum: 0, eta: 10);
|
---|
[14667] | 251 | #endregion
|
---|
[12957] | 252 |
|
---|
| 253 | ProblemInstances.UpdateOfRunsInProgress = true;
|
---|
| 254 | try {
|
---|
| 255 | foreach (var instance in ProblemInstances) {
|
---|
[13791] | 256 | IItem item;
|
---|
| 257 | if (v != null) {
|
---|
| 258 | double x = 0, y = 0;
|
---|
| 259 | for (var feature = 0; feature < ds.GetLength(1); feature++) {
|
---|
| 260 | x += ds[key2Idx.GetByFirst(instance), feature] * v[feature, 0];
|
---|
| 261 | y += ds[key2Idx.GetByFirst(instance), feature] * v[feature, 1];
|
---|
| 262 | }
|
---|
| 263 |
|
---|
| 264 | if (instance.Results.TryGetValue("Projection.PCA.X", out item)) {
|
---|
| 265 | ((DoubleValue)item).Value = x;
|
---|
| 266 | } else instance.Results.Add("Projection.PCA.X", new DoubleValue(x));
|
---|
| 267 | if (instance.Results.TryGetValue("Projection.PCA.Y", out item)) {
|
---|
| 268 | ((DoubleValue)item).Value = y;
|
---|
| 269 | } else instance.Results.Add("Projection.PCA.Y", new DoubleValue(y));
|
---|
| 270 | } else {
|
---|
| 271 | instance.Results.Remove("Projection.PCA.X");
|
---|
| 272 | instance.Results.Remove("Projection.PCA.Y");
|
---|
[12957] | 273 | }
|
---|
[13561] | 274 |
|
---|
| 275 | if (instance.Results.TryGetValue("Projection.MDS.X", out item)) {
|
---|
[13751] | 276 | ((DoubleValue)item).Value = coords[key2Idx.GetByFirst(instance), 0];
|
---|
| 277 | } else instance.Results.Add("Projection.MDS.X", new DoubleValue(coords[key2Idx.GetByFirst(instance), 0]));
|
---|
[13561] | 278 | if (instance.Results.TryGetValue("Projection.MDS.Y", out item)) {
|
---|
[13751] | 279 | ((DoubleValue)item).Value = coords[key2Idx.GetByFirst(instance), 1];
|
---|
| 280 | } else instance.Results.Add("Projection.MDS.Y", new DoubleValue(coords[key2Idx.GetByFirst(instance), 1]));
|
---|
[13750] | 281 |
|
---|
| 282 | if (instance.Results.TryGetValue("Projection.SOM.X", out item)) {
|
---|
[13751] | 283 | ((DoubleValue)item).Value = somCoords[key2Idx.GetByFirst(instance), 0];
|
---|
| 284 | } else instance.Results.Add("Projection.SOM.X", new DoubleValue(somCoords[key2Idx.GetByFirst(instance), 0]));
|
---|
[13750] | 285 | if (instance.Results.TryGetValue("Projection.SOM.Y", out item)) {
|
---|
[13751] | 286 | ((DoubleValue)item).Value = somCoords[key2Idx.GetByFirst(instance), 1];
|
---|
| 287 | } else instance.Results.Add("Projection.SOM.Y", new DoubleValue(somCoords[key2Idx.GetByFirst(instance), 1]));
|
---|
[14667] | 288 |
|
---|
| 289 | if (instance.Results.TryGetValue("Projection.TSNE.X", out item)) {
|
---|
| 290 | ((DoubleValue)item).Value = tsneCoords[key2Idx.GetByFirst(instance), 0];
|
---|
| 291 | } else instance.Results.Add("Projection.TSNE.X", new DoubleValue(tsneCoords[key2Idx.GetByFirst(instance), 0]));
|
---|
| 292 | if (instance.Results.TryGetValue("Projection.TSNE.Y", out item)) {
|
---|
| 293 | ((DoubleValue)item).Value = tsneCoords[key2Idx.GetByFirst(instance), 1];
|
---|
| 294 | } else instance.Results.Add("Projection.TSNE.Y", new DoubleValue(tsneCoords[key2Idx.GetByFirst(instance), 1]));
|
---|
[12957] | 295 | }
|
---|
| 296 | } finally { ProblemInstances.UpdateOfRunsInProgress = false; }
|
---|
| 297 | }
|
---|
| 298 |
|
---|
[13485] | 299 | private static readonly HashSet<string> InterestingValueNames = new HashSet<string>() {
|
---|
[17175] | 300 | "QualityPerEvaluations", "QualityPerClock", "Problem Name", "Problem Type", "Algorithm Name", "Algorithm Type", "Maximization", "BestKnownQuality"
|
---|
[13485] | 301 | };
|
---|
| 302 |
|
---|
[13722] | 303 | public Task<ResultCollection> StartAlgorithmAsync(int index) {
|
---|
| 304 | return StartAlgorithmAsync(index, CancellationToken.None);
|
---|
| 305 | }
|
---|
| 306 |
|
---|
| 307 | public Task<ResultCollection> StartAlgorithmAsync(int index, CancellationToken cancellation) {
|
---|
[13774] | 308 | var selectedInstance = algorithmInstances[index];
|
---|
[13713] | 309 | var algorithmClone = (IAlgorithm)selectedInstance.Clone();
|
---|
| 310 | var problemClone = Problem.CloneProblem() as ISingleObjectiveHeuristicOptimizationProblem;
|
---|
| 311 | if (problemClone == null) throw new InvalidOperationException("Problem is not of type " + typeof(ISingleObjectiveHeuristicOptimizationProblem).FullName);
|
---|
| 312 | // TODO: It is assumed the problem instance by default is configured using no preexisting solution creator
|
---|
[13722] | 313 | var seedingStrategyLocal = SeedingStrategy.Value;
|
---|
| 314 | if (seedingStrategyLocal != SeedingStrategyTypes.NoSeeding) {
|
---|
[13713] | 315 | if (!SolutionSeedingPool.CheckedItems.Any()) throw new InvalidOperationException("There are no solutions selected for seeding.");
|
---|
| 316 | // TODO: It would be necessary to specify the solution creator somewhere (property and GUI)
|
---|
| 317 | var seedingCreator = problemClone.Operators.OfType<IPreexistingSolutionCreator>().FirstOrDefault();
|
---|
| 318 | if (seedingCreator == null) throw new InvalidOperationException("The problem does not contain a solution creator that allows seeding.");
|
---|
| 319 | seedingCreator.PreexistingSolutionsParameter.Value.Replace(SolutionSeedingPool.CheckedItems.Select(x => x.Value));
|
---|
[13722] | 320 | seedingCreator.SampleFromPreexistingParameter.Value.Value = seedingStrategyLocal == SeedingStrategyTypes.SeedBySampling;
|
---|
[13713] | 321 | // TODO: WHY!? WHY??!?
|
---|
| 322 | ((dynamic)problemClone.SolutionCreatorParameter).Value = (dynamic)seedingCreator;
|
---|
| 323 | }
|
---|
| 324 | algorithmClone.Problem = problemClone;
|
---|
| 325 | algorithmClone.Prepare(true);
|
---|
[13649] | 326 | IParameter stopParam;
|
---|
| 327 | var monitorStop = true;
|
---|
[13713] | 328 | if (algorithmClone.Parameters.TryGetValue("MaximumEvaluations", out stopParam)) {
|
---|
[13649] | 329 | var maxEvalParam = stopParam as IValueParameter<Data.IntValue>;
|
---|
| 330 | if (maxEvalParam != null) {
|
---|
[13722] | 331 | maxEvalParam.Value.Value = MaximumEvaluations.Value;
|
---|
[13649] | 332 | monitorStop = false;
|
---|
| 333 | }
|
---|
| 334 | }
|
---|
| 335 |
|
---|
[13713] | 336 | // TODO: The following can be simplified when we have async implementation patterns for our algorithms:
|
---|
| 337 | // TODO: The closures can be removed and replaced with private member methods
|
---|
| 338 | var waitHandle = new AutoResetEvent(false);
|
---|
[13649] | 339 |
|
---|
[13713] | 340 | #region EventHandler closures
|
---|
| 341 | EventHandler exeStateChanged = (sender, e) => {
|
---|
[13722] | 342 | if (algorithmClone.ExecutionState == ExecutionState.Stopped) {
|
---|
[13748] | 343 | lock (Problem.Solutions) {
|
---|
| 344 | foreach (var solution in algorithmClone.Results.Where(x => x.Name.ToLower().Contains("solution")).Select(x => x.Value).OfType<IScope>()) {
|
---|
| 345 | Problem.Solutions.Add(new SingleObjectiveOKBSolution(Problem.ProblemId) {
|
---|
| 346 | Quality = solution.Variables.ContainsKey(Problem.Problem.Evaluator.QualityParameter.ActualName) ? ((DoubleValue)solution.Variables[Problem.Problem.Evaluator.QualityParameter.ActualName].Value).Value : double.NaN,
|
---|
| 347 | Solution = (IItem)solution.Clone()
|
---|
| 348 | });
|
---|
| 349 | }
|
---|
[13713] | 350 | }
|
---|
[13722] | 351 | if (seedingStrategyLocal == SeedingStrategyTypes.NoSeeding) {
|
---|
[13748] | 352 | lock (InstanceRuns) {
|
---|
| 353 | InstanceRuns.Add(algorithmClone.Runs.Last());
|
---|
| 354 | }
|
---|
| 355 | } else {
|
---|
| 356 | lock (SeededRuns) {
|
---|
| 357 | SeededRuns.Add(algorithmClone.Runs.Last());
|
---|
| 358 | }
|
---|
| 359 | }
|
---|
[13713] | 360 | waitHandle.Set();
|
---|
[13649] | 361 | }
|
---|
[13713] | 362 | };
|
---|
[13649] | 363 |
|
---|
[13713] | 364 | EventHandler<EventArgs<Exception>> exceptionOccurred = (sender, e) => {
|
---|
| 365 | waitHandle.Set();
|
---|
| 366 | };
|
---|
[13649] | 367 |
|
---|
[13713] | 368 | EventHandler timeChanged = (sender, e) => {
|
---|
| 369 | IResult evalSolResult;
|
---|
| 370 | if (!algorithmClone.Results.TryGetValue("EvaluatedSolutions", out evalSolResult) || !(evalSolResult.Value is Data.IntValue)) return;
|
---|
| 371 | var evalSols = ((Data.IntValue)evalSolResult.Value).Value;
|
---|
[13722] | 372 | if (evalSols >= MaximumEvaluations.Value && algorithmClone.ExecutionState == ExecutionState.Started)
|
---|
[13713] | 373 | algorithmClone.Stop();
|
---|
| 374 | };
|
---|
| 375 | #endregion
|
---|
[13649] | 376 |
|
---|
[13713] | 377 | algorithmClone.ExecutionStateChanged += exeStateChanged;
|
---|
| 378 | algorithmClone.ExceptionOccurred += exceptionOccurred;
|
---|
| 379 | if (monitorStop) algorithmClone.ExecutionTimeChanged += timeChanged;
|
---|
[13649] | 380 |
|
---|
[13713] | 381 | return Task.Factory.StartNew(() => {
|
---|
| 382 | algorithmClone.Start();
|
---|
[13722] | 383 | OnAlgorithmInstanceStarted(algorithmClone);
|
---|
| 384 | var cancelRequested = false;
|
---|
| 385 | while (!waitHandle.WaitOne(200)) {
|
---|
| 386 | if (cancellation.IsCancellationRequested) {
|
---|
| 387 | cancelRequested = true;
|
---|
| 388 | break;
|
---|
| 389 | }
|
---|
| 390 | }
|
---|
| 391 | if (cancelRequested) {
|
---|
| 392 | try { algorithmClone.Stop(); } catch { } // ignore race condition if it is stopped in the meantime
|
---|
| 393 | waitHandle.WaitOne();
|
---|
| 394 | }
|
---|
[13713] | 395 | waitHandle.Dispose();
|
---|
[13722] | 396 | return algorithmClone.Results;
|
---|
| 397 | }, TaskCreationOptions.LongRunning);
|
---|
[13649] | 398 | }
|
---|
| 399 |
|
---|
[13722] | 400 | public ResultCollection StartAlgorithm(int index, CancellationToken cancellation) {
|
---|
| 401 | var task = StartAlgorithmAsync(index, cancellation);
|
---|
| 402 | task.Wait(cancellation);
|
---|
| 403 | return task.Result;
|
---|
[13649] | 404 | }
|
---|
| 405 |
|
---|
[13718] | 406 | public Task UpdateKnowledgeBaseAsync(IProgress progress = null) {
|
---|
[16958] | 407 | if (progress == null) progress = new Progress();
|
---|
[13485] | 408 | progress.Start("Updating Knowledge Base from OKB");
|
---|
[13718] | 409 | OnDownloadStarted(progress);
|
---|
| 410 | return Task.Factory.StartNew(() => { DoUpdateKnowledgeBase(progress); }, TaskCreationOptions.LongRunning);
|
---|
[13485] | 411 | }
|
---|
| 412 |
|
---|
[13718] | 413 | public void UpdateKnowledgeBase(IProgress progress = null) {
|
---|
| 414 | UpdateKnowledgeBaseAsync(progress).Wait();
|
---|
[13485] | 415 | }
|
---|
| 416 |
|
---|
| 417 | private void DoUpdateKnowledgeBase(IProgress progress) {
|
---|
| 418 | var queryClient = Clients.OKB.Query.QueryClient.Instance;
|
---|
| 419 | var adminClient = Clients.OKB.Administration.AdministrationClient.Instance;
|
---|
| 420 | try {
|
---|
[16958] | 421 | progress.Message = "Connecting to OKB...";
|
---|
[13551] | 422 | progress.ProgressValue = 0;
|
---|
| 423 | // FIXME: How to tell if refresh is necessary?
|
---|
[13759] | 424 | var refreshTasks = new[] {
|
---|
| 425 | Task.Factory.StartNew(() => queryClient.Refresh()),
|
---|
| 426 | Task.Factory.StartNew(() => adminClient.Refresh())
|
---|
| 427 | };
|
---|
| 428 | Task.WaitAll(refreshTasks);
|
---|
[13551] | 429 |
|
---|
| 430 | var probInstance = adminClient.Problems.SingleOrDefault(x => x.Id == Problem.ProblemId);
|
---|
| 431 | if (probInstance == null) throw new InvalidOperationException("The chosen problem instance cannot be found in the OKB.");
|
---|
| 432 | var probClassId = probInstance.ProblemClassId;
|
---|
| 433 |
|
---|
| 434 | var problemClassFilter = (Clients.OKB.Query.StringComparisonAvailableValuesFilter)queryClient.Filters.Single(x => x.Label == "Problem Class Name");
|
---|
| 435 | problemClassFilter.Value = adminClient.ProblemClasses.Single(x => x.Id == probClassId).Name;
|
---|
| 436 |
|
---|
[13757] | 437 | problemId2ProblemInstanceMapping.Clear();
|
---|
[16958] | 438 | progress.Message = "Downloading algorithm and problem instances...";
|
---|
[13551] | 439 | progress.ProgressValue = 0;
|
---|
[13809] | 440 |
|
---|
[13752] | 441 | int[] p = { 0 };
|
---|
[13551] | 442 | ProblemInstances.UpdateOfRunsInProgress = true;
|
---|
| 443 | ProblemInstances.Clear();
|
---|
| 444 | algorithmId2AlgorithmInstanceMapping.Clear();
|
---|
[13804] | 445 | algorithmId2RunMapping.Clear();
|
---|
| 446 | algorithmInstances.Clear();
|
---|
[13809] | 447 |
|
---|
| 448 | var characteristics = new HashSet<string>();
|
---|
| 449 | var totalProblems = adminClient.Problems.Count(x => x.ProblemClassId == probClassId);
|
---|
| 450 | var totalAlgorithms = adminClient.Algorithms.Count;
|
---|
| 451 | var problems = adminClient.Problems.Where(x => x.ProblemClassId == probClassId);
|
---|
| 452 | var algorithms = adminClient.Algorithms;
|
---|
| 453 | var combined = problems.Cast<object>().Concat(algorithms.Cast<object>()).Shuffle(new MersenneTwister());
|
---|
| 454 | Parallel.ForEach(combined, new ParallelOptions { MaxDegreeOfParallelism = Environment.ProcessorCount }, (inst) => {
|
---|
| 455 | var pInst = inst as Clients.OKB.Administration.Problem;
|
---|
| 456 | if (pInst != null) DownloadProblemInstance(progress, pInst, p, totalProblems + totalAlgorithms, characteristics);
|
---|
| 457 | else {
|
---|
| 458 | var aInst = inst as Clients.OKB.Administration.Algorithm;
|
---|
| 459 | DownloadAlgorithmInstance(progress, aInst, p, totalProblems + totalAlgorithms);
|
---|
[13551] | 460 | }
|
---|
[13752] | 461 | });
|
---|
[13551] | 462 |
|
---|
[13485] | 463 | var interestingValues = queryClient.ValueNames.Where(x => InterestingValueNames.Contains(x.Name)).ToList();
|
---|
| 464 |
|
---|
[16958] | 465 | progress.Message = "Downloading runs...";
|
---|
[13551] | 466 | progress.ProgressValue = 0;
|
---|
[13752] | 467 | p[0] = 0;
|
---|
[13551] | 468 | var count = queryClient.GetNumberOfRuns(problemClassFilter);
|
---|
[13485] | 469 | if (count == 0) return;
|
---|
[13649] | 470 |
|
---|
[13752] | 471 | var runList = new List<IRun>();
|
---|
[13809] | 472 | var runIds = LoadRunsFromCache(queryClient.GetRunIds(problemClassFilter), runList, progress);
|
---|
[13752] | 473 | var batches = runIds.Select((v, i) => new { Idx = i, Val = v }).GroupBy(x => x.Idx / 500, x => x.Val);
|
---|
[13809] | 474 | Parallel.ForEach(batches.Select(x => x.ToList()), new ParallelOptions { MaxDegreeOfParallelism = Math.Min(Environment.ProcessorCount, 4) },
|
---|
| 475 | (batch) => {
|
---|
[13752] | 476 | var okbRuns = queryClient.GetRunsWithValues(batch, true, interestingValues);
|
---|
[13809] | 477 | var hlRuns = okbRuns.AsParallel().Select(x => new { AlgorithmId = x.Algorithm.Id, RunId = x.Id, Run = queryClient.ConvertToOptimizationRun(x) }).ToList();
|
---|
[13752] | 478 | lock (runList) {
|
---|
[13809] | 479 | var toCache = new List<Tuple<long, long, IRun>>();
|
---|
[13752] | 480 | foreach (var r in hlRuns) {
|
---|
| 481 | algorithmId2RunMapping.Add(r.AlgorithmId, r.Run);
|
---|
| 482 | runList.Add(r.Run);
|
---|
[13809] | 483 | toCache.Add(Tuple.Create(r.AlgorithmId, r.RunId, r.Run));
|
---|
[13485] | 484 | }
|
---|
[13809] | 485 | SaveToCache(toCache);
|
---|
[16958] | 486 | progress.Message = string.Format("Downloaded runs {0} to {1} of {2}...", p[0], p[0] + batch.Count, count);
|
---|
[13752] | 487 | p[0] += batch.Count;
|
---|
| 488 | progress.ProgressValue = p[0] / (double)count;
|
---|
| 489 | }
|
---|
| 490 | });
|
---|
[16958] | 491 | progress.Message = "Finishing...";
|
---|
[13551] | 492 |
|
---|
[13804] | 493 | // remove algorithm instances that do not appear in any downloaded run
|
---|
| 494 | for (var algIdx = 0; algIdx < algorithmInstances.Count; algIdx++) {
|
---|
| 495 | var id = algorithmId2AlgorithmInstanceMapping.GetBySecond(algorithmInstances[algIdx]);
|
---|
| 496 | if (!algorithmId2RunMapping.ContainsFirst(id)) {
|
---|
| 497 | algorithmId2AlgorithmInstanceMapping.RemoveByFirst(id);
|
---|
| 498 | algorithmInstances.RemoveAt(algIdx);
|
---|
| 499 | algIdx--;
|
---|
| 500 | }
|
---|
| 501 | }
|
---|
[13787] | 502 |
|
---|
| 503 | try {
|
---|
| 504 | KnowledgeBase.UpdateOfRunsInProgress = true;
|
---|
| 505 | KnowledgeBase.Clear();
|
---|
| 506 | KnowledgeBase.AddRange(runList);
|
---|
| 507 | } finally { KnowledgeBase.UpdateOfRunsInProgress = false; }
|
---|
| 508 |
|
---|
[13551] | 509 | var algInstRunDict = runList.Where(x => x.Parameters.ContainsKey("Problem Name") && x.Parameters["Problem Name"] is StringValue)
|
---|
| 510 | .GroupBy(x => ((StringValue)x.Parameters["Problem Name"]).Value)
|
---|
| 511 | .ToDictionary(x => x.Key, x => x.GroupBy(y => ((StringValue)y.Parameters["Algorithm Name"]).Value)
|
---|
| 512 | .ToDictionary(y => y.Key, y => y.ToList()));
|
---|
| 513 |
|
---|
[13787] | 514 | // set best-known quality to best-found in case it is not known
|
---|
| 515 | foreach (var kvp in algInstRunDict) {
|
---|
| 516 | var prob = ProblemInstances.SingleOrDefault(x => ((StringValue)x.Parameters["Problem Name"]).Value == kvp.Key);
|
---|
| 517 | if (prob == null) continue;
|
---|
| 518 | var maximization = ((BoolValue)prob.Parameters["Maximization"]).Value;
|
---|
[13551] | 519 |
|
---|
[13649] | 520 | IItem bkParam;
|
---|
[17175] | 521 | if (!prob.Parameters.TryGetValue("BestKnownQuality", out bkParam) || !(bkParam is DoubleValue) || double.IsNaN(((DoubleValue)bkParam).Value)) {
|
---|
| 522 | var best = double.NaN;
|
---|
| 523 | foreach (var x in kvp.Value.SelectMany(x => x.Value)) {
|
---|
| 524 | double? lastVal = null;
|
---|
| 525 | if (x.Results.TryGetValue("QualityPerEvaluations", out var item)) {
|
---|
| 526 | lastVal = ((IndexedDataTable<double>)item).Rows.FirstOrDefault()?.Values.LastOrDefault()?.Item2;
|
---|
| 527 | }
|
---|
| 528 | if (x.Results.TryGetValue("QualityPerClock", out item)) {
|
---|
| 529 | lastVal = ((IndexedDataTable<double>)item).Rows.FirstOrDefault()?.Values.LastOrDefault()?.Item2;
|
---|
| 530 | }
|
---|
| 531 | if (lastVal.HasValue && (double.IsNaN(best)
|
---|
| 532 | || maximization && best < lastVal.Value
|
---|
| 533 | || !maximization && best > lastVal.Value))
|
---|
| 534 | best = lastVal.Value;
|
---|
| 535 | }
|
---|
| 536 | if (double.IsNaN(best)) continue;
|
---|
| 537 | bkParam = new DoubleValue(best);
|
---|
[13787] | 538 | prob.Parameters["BestKnownQuality"] = bkParam;
|
---|
| 539 | }
|
---|
| 540 | }
|
---|
[13551] | 541 |
|
---|
[13787] | 542 | // add algorithm instance ranks as features to the problem instances for a range of targets
|
---|
[13797] | 543 | foreach (var target in new[] {0, 0.01, 0.05, 0.1, 0.2, 0.5}) {
|
---|
[13787] | 544 | var cls = GetPerformanceClasses(target, 5);
|
---|
| 545 | foreach (var kvp in cls) {
|
---|
| 546 | var prob = kvp.Key;
|
---|
| 547 | foreach (var kvp2 in kvp.Value) {
|
---|
[13797] | 548 | var resultName = "Rank." + algorithmId2AlgorithmInstanceMapping.GetByFirst(kvp2.Key) + "@" + (target * 100) + "%";
|
---|
[13787] | 549 | prob.Results[resultName] = new IntValue(kvp2.Value);
|
---|
[13485] | 550 | }
|
---|
| 551 | }
|
---|
| 552 | }
|
---|
[13551] | 553 | } finally { progress.Finish(); ProblemInstances.UpdateOfRunsInProgress = false; }
|
---|
[13787] | 554 | UpdateInstanceProjection(ProblemInstances.ResultNames.Where(x => x.StartsWith("Characteristic.")).ToArray());
|
---|
[13485] | 555 | }
|
---|
| 556 |
|
---|
[13809] | 557 | private void DownloadAlgorithmInstance(IProgress progress, Algorithm algInst, int[] p, int total) {
|
---|
| 558 | IAlgorithm alg = null;
|
---|
| 559 | var data = Clients.OKB.Administration.AdministrationClient.GetAlgorithmData(algInst.Id);
|
---|
| 560 | if (data != null) {
|
---|
| 561 | using (var stream = new MemoryStream(data)) {
|
---|
| 562 | try {
|
---|
| 563 | alg = (IAlgorithm)XmlParser.Deserialize<IContent>(stream);
|
---|
| 564 | } catch { }
|
---|
| 565 | stream.Close();
|
---|
| 566 | }
|
---|
| 567 | if (alg != null) {
|
---|
| 568 | lock (progress) {
|
---|
| 569 | algorithmInstances.Add(alg);
|
---|
| 570 | algorithmId2AlgorithmInstanceMapping.Add(algInst.Id, alg);
|
---|
[16958] | 571 | progress.Message = string.Format("Downloaded algorithm {0} (okb-id: {1})...", algInst.Name, algInst.Id);
|
---|
[13809] | 572 | p[0]++;
|
---|
| 573 | progress.ProgressValue = p[0] / (double)total;
|
---|
| 574 | }
|
---|
| 575 | }
|
---|
| 576 | }
|
---|
| 577 | }
|
---|
| 578 |
|
---|
| 579 | private void DownloadProblemInstance(IProgress progress, Problem pInst, int[] p, int totalProblems, HashSet<string> characteristics) {
|
---|
| 580 | var charas = new List<string>();
|
---|
| 581 | IRun probRun = null;
|
---|
| 582 | var data = Clients.OKB.Administration.AdministrationClient.GetProblemData(pInst.Id);
|
---|
| 583 | if (data != null) {
|
---|
| 584 | using (var stream = new MemoryStream(data)) {
|
---|
| 585 | try {
|
---|
| 586 | var prob = (IProblem)XmlParser.Deserialize<IContent>(stream);
|
---|
| 587 | probRun = new Run() {Name = prob.Name};
|
---|
| 588 | prob.CollectParameterValues(probRun.Parameters);
|
---|
| 589 | probRun.Parameters["Problem Name"] = new StringValue(prob.Name);
|
---|
| 590 | probRun.Parameters["Problem Type"] = new StringValue(prob.GetType().Name);
|
---|
| 591 | foreach (var v in RunCreationClient.Instance.GetCharacteristicValues(pInst.Id)) {
|
---|
| 592 | probRun.Results.Add("Characteristic." + v.Name, RunCreationClient.Instance.ConvertToItem(v));
|
---|
| 593 | charas.Add("Characteristic." + v.Name);
|
---|
| 594 | }
|
---|
| 595 | } catch { }
|
---|
| 596 | stream.Close();
|
---|
| 597 | }
|
---|
| 598 | if (probRun != null) {
|
---|
| 599 | lock (progress) {
|
---|
| 600 | problemId2ProblemInstanceMapping.Add(pInst.Id, probRun);
|
---|
| 601 | ProblemInstances.Add(probRun);
|
---|
[16958] | 602 | progress.Message = string.Format("Downloaded problem {0} (okb-id: {1})....", pInst.Name, pInst.Id);
|
---|
[13809] | 603 | p[0]++;
|
---|
| 604 | progress.ProgressValue = p[0] / (double)totalProblems;
|
---|
| 605 | foreach (var c in charas) characteristics.Add(c);
|
---|
| 606 | }
|
---|
| 607 | }
|
---|
| 608 | }
|
---|
| 609 | }
|
---|
| 610 |
|
---|
| 611 | private List<long> LoadRunsFromCache(IEnumerable<long> runIds, List<IRun> runList, IProgress progress) {
|
---|
| 612 | var hashSet = new HashSet<long>(runIds);
|
---|
| 613 | var total = hashSet.Count;
|
---|
| 614 | try {
|
---|
[17175] | 615 | var updateCount = 0;
|
---|
| 616 | var path = Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData), "HeuristicLab.OKB", "cache", "runsperalg");
|
---|
| 617 | Parallel.ForEach(Directory.EnumerateFiles(path), new ParallelOptions() { MaxDegreeOfParallelism = Environment.ProcessorCount },
|
---|
| 618 | (algPath) => {
|
---|
| 619 | var serializer = new ProtoBufSerializer();
|
---|
| 620 | var algId = long.Parse(Path.GetFileName(algPath));
|
---|
| 621 | using (var stream = File.Open(algPath, FileMode.Open, FileAccess.ReadWrite, FileShare.None)) {
|
---|
| 622 | using (var archive = new ZipArchive(stream, ZipArchiveMode.Read)) {
|
---|
| 623 | foreach (var entry in archive.Entries) {
|
---|
| 624 | var runId = long.Parse(entry.Name);
|
---|
| 625 | var useEntry = false;
|
---|
| 626 | lock (hashSet) {
|
---|
| 627 | useEntry = hashSet.Remove(runId);
|
---|
| 628 | }
|
---|
| 629 | if (useEntry) {
|
---|
| 630 | //using (var df = new DeflateStream(entry.Open(), CompressionMode.Decompress)) {
|
---|
| 631 | var run = (Tuple<long, long, IRun>)serializer.Deserialize(entry.Open());
|
---|
| 632 | if (run.Item1 != algId || run.Item2 != runId) {
|
---|
| 633 | lock (hashSet) hashSet.Add(runId);
|
---|
| 634 | continue;
|
---|
| 635 | }
|
---|
| 636 | lock (runList) {
|
---|
| 637 | algorithmId2RunMapping.Add(algId, run.Item3);
|
---|
| 638 | runList.Add(run.Item3);
|
---|
| 639 | updateCount++;
|
---|
| 640 | if (total < 100 || updateCount % (total / 100) == 0) {
|
---|
| 641 | progress.Message = string.Format("Retrieved {0} of {1} from cache", updateCount, total);
|
---|
| 642 | progress.ProgressValue = (double)runList.Count / total;
|
---|
| 643 | }
|
---|
| 644 | }
|
---|
| 645 | //}
|
---|
| 646 | }
|
---|
| 647 | }
|
---|
| 648 | }
|
---|
[13809] | 649 | }
|
---|
[17175] | 650 | });
|
---|
[13809] | 651 | } catch { }
|
---|
| 652 | return hashSet.ToList();
|
---|
| 653 | }
|
---|
| 654 |
|
---|
| 655 | private void SaveToCache(IEnumerable<Tuple<long, long, IRun>> runs) {
|
---|
| 656 | try {
|
---|
[17175] | 657 | var path = Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData), "HeuristicLab.OKB", "cache", "runsperalg");
|
---|
[13809] | 658 | if (!Directory.Exists(path)) Directory.CreateDirectory(path);
|
---|
[17175] | 659 | var serializer = new ProtoBufSerializer();
|
---|
| 660 | foreach (var runsOfAlg in runs.GroupBy(x => x.Item1)) {
|
---|
| 661 | var runPath = Path.Combine(path, runsOfAlg.Key.ToString());
|
---|
| 662 | using (var stream = File.Open(runPath, FileMode.OpenOrCreate, FileAccess.ReadWrite, FileShare.None)) {
|
---|
| 663 | using (var archive = new ZipArchive(stream, ZipArchiveMode.Update)) {
|
---|
| 664 | foreach (var run in runsOfAlg) {
|
---|
| 665 | var entry = archive.CreateEntry(run.Item2.ToString(), CompressionLevel.NoCompression);
|
---|
| 666 | using (var entrystream = entry.Open()) {
|
---|
| 667 | serializer.Serialize(run, entrystream, disposeStream: false);
|
---|
| 668 | }
|
---|
| 669 | }
|
---|
| 670 | }
|
---|
[13809] | 671 | }
|
---|
| 672 | }
|
---|
| 673 | } catch { }
|
---|
| 674 | }
|
---|
| 675 |
|
---|
[13791] | 676 | public static double[][] GetFeatures(IRun[] problemInstances, string[] characteristics, double[] medianValues = null) {
|
---|
| 677 | var instances = new double[problemInstances.Length][];
|
---|
| 678 | for (var p = 0; p < problemInstances.Length; p++) {
|
---|
| 679 | instances[p] = new double[characteristics.Length];
|
---|
| 680 | for (var f = 0; f < characteristics.Length; f++) {
|
---|
| 681 | IItem item;
|
---|
| 682 | if (problemInstances[p].Results.TryGetValue(characteristics[f], out item)) {
|
---|
| 683 | double val = 0;
|
---|
| 684 | var dItem = item as DoubleValue;
|
---|
| 685 | if (dItem != null) {
|
---|
| 686 | val = dItem.Value;
|
---|
| 687 | } else {
|
---|
| 688 | var iItem = item as IntValue;
|
---|
| 689 | if (iItem != null) val = iItem.Value;
|
---|
| 690 | else val = double.NaN;
|
---|
| 691 | }
|
---|
| 692 | if (double.IsNaN(val) && medianValues != null)
|
---|
| 693 | instances[p][f] = medianValues[f];
|
---|
| 694 | else instances[p][f] = val;
|
---|
| 695 | } else instances[p][f] = medianValues != null ? medianValues[f] : double.NaN;
|
---|
| 696 | }
|
---|
| 697 | }
|
---|
| 698 | return instances;
|
---|
| 699 | }
|
---|
| 700 |
|
---|
[13878] | 701 | public static double[][] GetFeaturesStandardized(IRun[] problemInstances, string[] characteristics, out double[] means, out double[] sdevs, double[] medianValues = null) {
|
---|
| 702 | var instances = new double[problemInstances.Length][];
|
---|
| 703 | var columns = new List<double>[characteristics.Length];
|
---|
| 704 | for (var p = 0; p < problemInstances.Length; p++) {
|
---|
| 705 | instances[p] = new double[characteristics.Length];
|
---|
| 706 | for (var f = 0; f < characteristics.Length; f++) {
|
---|
| 707 | if (columns[f] == null) {
|
---|
| 708 | columns[f] = new List<double>(problemInstances.Length);
|
---|
| 709 | }
|
---|
| 710 | IItem item;
|
---|
| 711 | if (problemInstances[p].Results.TryGetValue(characteristics[f], out item)) {
|
---|
| 712 | double val = 0;
|
---|
| 713 | var dItem = item as DoubleValue;
|
---|
| 714 | if (dItem != null) {
|
---|
| 715 | val = dItem.Value;
|
---|
| 716 | } else {
|
---|
| 717 | var iItem = item as IntValue;
|
---|
| 718 | if (iItem != null) val = iItem.Value;
|
---|
| 719 | else val = double.NaN;
|
---|
| 720 | }
|
---|
| 721 | if (double.IsNaN(val) && medianValues != null)
|
---|
| 722 | instances[p][f] = medianValues[f];
|
---|
| 723 | else instances[p][f] = val;
|
---|
| 724 | columns[f].Add(instances[p][f]);
|
---|
| 725 | } else instances[p][f] = medianValues != null ? medianValues[f] : double.NaN;
|
---|
| 726 | }
|
---|
| 727 | }
|
---|
| 728 |
|
---|
| 729 | means = new double[characteristics.Length];
|
---|
| 730 | sdevs = new double[characteristics.Length];
|
---|
| 731 | for (var f = 0; f < characteristics.Length; f++) {
|
---|
| 732 | var mean = columns[f].Average();
|
---|
| 733 | var dev = columns[f].StandardDeviation();
|
---|
| 734 | means[f] = mean;
|
---|
| 735 | sdevs[f] = dev;
|
---|
| 736 | for (var p = 0; p < problemInstances.Length; p++) {
|
---|
| 737 | if (dev.IsAlmost(0)) instances[p][f] = 0;
|
---|
| 738 | else instances[p][f] = (instances[p][f] - mean) / dev;
|
---|
| 739 | }
|
---|
| 740 | }
|
---|
| 741 |
|
---|
| 742 | return instances;
|
---|
| 743 | }
|
---|
| 744 |
|
---|
[13791] | 745 | public static double[] GetMedianValues(IRun[] problemInstances, string[] characteristics) {
|
---|
| 746 | var values = new List<double>[characteristics.Length];
|
---|
| 747 | foreach (var problemInstance in problemInstances) {
|
---|
| 748 | for (var f = 0; f < characteristics.Length; f++) {
|
---|
| 749 | if (values[f] == null) values[f] = new List<double>(problemInstances.Length);
|
---|
| 750 | IItem item;
|
---|
| 751 | if (problemInstance.Results.TryGetValue(characteristics[f], out item)) {
|
---|
| 752 | var dItem = item as DoubleValue;
|
---|
| 753 | if (dItem != null) values[f].Add(dItem.Value);
|
---|
| 754 | else {
|
---|
| 755 | var iItem = item as IntValue;
|
---|
| 756 | if (iItem != null) values[f].Add(iItem.Value);
|
---|
| 757 | }
|
---|
| 758 | }
|
---|
| 759 | }
|
---|
| 760 | }
|
---|
| 761 | return values.Select(x => x.Count == 0 ? 0.0 : x.Median()).ToArray();
|
---|
| 762 | }
|
---|
| 763 |
|
---|
| 764 | public Dictionary<IRun, double[]> GetProblemCharacteristics(string[] characteristics) {
|
---|
| 765 | var map = ProblemInstances.Select((v, i) => new { Index = i, ProblemInstance = v }).ToDictionary(x => x.Index, x => x.ProblemInstance);
|
---|
| 766 | var instances = GetFeatures(ProblemInstances.ToArray(), characteristics);
|
---|
| 767 | var median = GetMedianValues(ProblemInstances.ToArray(), characteristics);
|
---|
| 768 |
|
---|
| 769 | var allValues = instances.Select(x => x.Select((f, i) => new { Idx = i, Val = double.IsNaN(f) ? median[i] : f }).ToList())
|
---|
| 770 | .SelectMany(x => x)
|
---|
| 771 | .GroupBy(x => x.Idx, x => x.Val)
|
---|
| 772 | .OrderBy(x => x.Key).ToList();
|
---|
| 773 | var avg = allValues.Select(x => x.Average()).ToList();
|
---|
| 774 | var stdev = allValues.Select(x => x.StandardDeviation()).ToList();
|
---|
| 775 |
|
---|
| 776 | // normalize characteristic values by transforming them to their z-score
|
---|
| 777 | foreach (var features in instances) {
|
---|
| 778 | for (var i = 0; i < features.Length; i++) {
|
---|
| 779 | if (double.IsNaN(features[i])) features[i] = median[i];
|
---|
| 780 | if (stdev[i] > 0) features[i] = (features[i] - avg[i]) / stdev[i];
|
---|
| 781 | }
|
---|
| 782 | }
|
---|
| 783 | return instances.Select((v, i) => new { ProblemInstance = map[i], Features = v }).ToDictionary(x => x.ProblemInstance, x => x.Features);
|
---|
| 784 | }
|
---|
| 785 |
|
---|
[13774] | 786 | public Dictionary<IAlgorithm, double> GetAlgorithmPerformance(IRun problemInstance) {
|
---|
| 787 | if (!problemInstance.Parameters.ContainsKey("BestKnownQuality")) return new Dictionary<IAlgorithm, double>();
|
---|
[13797] | 788 | var target = GetTarget(((DoubleValue)problemInstance.Parameters["BestKnownQuality"]).Value, MinimumTarget.Value, Maximization);
|
---|
[13774] | 789 | return knowledgeBase.Where(x => ((StringValue)x.Parameters["Problem Name"]).Value == ((StringValue)problemInstance.Parameters["Problem Name"]).Value)
|
---|
[17175] | 790 | .Select(x => {
|
---|
| 791 | IItem item = null;
|
---|
| 792 | if (x.Results.TryGetValue("QualityPerEvaluations", out item)) {
|
---|
| 793 | var idt = (IndexedDataTable<double>)item;
|
---|
| 794 | return Tuple.Create(x, idt.Rows.First().Values.AsEnumerable());
|
---|
| 795 | }
|
---|
| 796 | if (x.Results.TryGetValue("QualityPerClock", out item)) {
|
---|
| 797 | var idt = (IndexedDataTable<double>)item;
|
---|
| 798 | return Tuple.Create(x, idt.Rows.First().Values.AsEnumerable());
|
---|
| 799 | }
|
---|
| 800 | return null;
|
---|
| 801 | })
|
---|
| 802 | .Where(x => x != null)
|
---|
| 803 | .GroupBy(x => algorithmId2AlgorithmInstanceMapping.GetByFirst(algorithmId2RunMapping.GetBySecond(x.Item1).Single()))
|
---|
| 804 | .ToDictionary(x => x.Key, x => ExpectedRuntimeHelper.CalculateErt(x.Select(y => y.Item2), target, Maximization).ExpectedRuntime);
|
---|
[13774] | 805 | }
|
---|
| 806 |
|
---|
[13878] | 807 | public Dictionary<IAlgorithm, double> GetAlgorithmPerformanceLog10(IRun problemInstance) {
|
---|
| 808 | if (!problemInstance.Parameters.ContainsKey("BestKnownQuality")) return new Dictionary<IAlgorithm, double>();
|
---|
| 809 | var target = GetTarget(((DoubleValue)problemInstance.Parameters["BestKnownQuality"]).Value, MinimumTarget.Value, Maximization);
|
---|
| 810 | return knowledgeBase.Where(x => ((StringValue)x.Parameters["Problem Name"]).Value == ((StringValue)problemInstance.Parameters["Problem Name"]).Value)
|
---|
[17175] | 811 | .Select(x => {
|
---|
| 812 | IItem item = null;
|
---|
| 813 | if (x.Results.TryGetValue("QualityPerEvaluations", out item)) {
|
---|
| 814 | var idt = (IndexedDataTable<double>)item;
|
---|
| 815 | return Tuple.Create(x, idt.Rows.First().Values.AsEnumerable());
|
---|
| 816 | }
|
---|
| 817 | if (x.Results.TryGetValue("QualityPerClock", out item)) {
|
---|
| 818 | var idt = (IndexedDataTable<double>)item;
|
---|
| 819 | return Tuple.Create(x, idt.Rows.First().Values.AsEnumerable());
|
---|
| 820 | }
|
---|
| 821 | return null;
|
---|
| 822 | })
|
---|
| 823 | .Where(x => x != null)
|
---|
| 824 | .GroupBy(x => algorithmId2AlgorithmInstanceMapping.GetByFirst(algorithmId2RunMapping.GetBySecond(x.Item1).Single()))
|
---|
| 825 | .ToDictionary(x => x.Key, x => Math.Log10(ExpectedRuntimeHelper.CalculateErt(x.Select(y => y.Item2), target, Maximization).ExpectedRuntime));
|
---|
[13878] | 826 | }
|
---|
| 827 |
|
---|
[13791] | 828 | public Dictionary<IAlgorithm, List<IRun>> GetAlgorithmRuns(IRun problemInstance) {
|
---|
| 829 | return knowledgeBase.Where(x => ((StringValue)x.Parameters["Problem Name"]).Value == ((StringValue)problemInstance.Parameters["Problem Name"]).Value)
|
---|
| 830 | .GroupBy(x => algorithmId2AlgorithmInstanceMapping.GetByFirst(algorithmId2RunMapping.GetBySecond(x).Single()))
|
---|
| 831 | .ToDictionary(x => x.Key, x => x.ToList());
|
---|
| 832 | }
|
---|
| 833 |
|
---|
[13774] | 834 | public Dictionary<IAlgorithm, List<IRun>> GetKnowledgeBaseByAlgorithm() {
|
---|
| 835 | return KnowledgeBase.GroupBy(x => algorithmId2AlgorithmInstanceMapping.GetByFirst(algorithmId2RunMapping.GetBySecond(x).Single()))
|
---|
| 836 | .ToDictionary(x => x.Key, x => x.ToList());
|
---|
| 837 | }
|
---|
| 838 |
|
---|
[13787] | 839 | public IEnumerable<IRegressionProblem> GetRegressionProblemPerAlgorithmInstance(double target, string[] characteristics) {
|
---|
[13774] | 840 | if (Problem == null) yield break;
|
---|
[13787] | 841 | var features = GetProblemCharacteristics(characteristics);
|
---|
[13774] | 842 | // TODO: knowledgebase only stores problem name as a string
|
---|
| 843 | // this doesn't work if there are two equally named problem instances
|
---|
| 844 | var problemMap = ProblemInstances.Select(x => new { Key = ((StringValue)x.Parameters["Problem Name"]).Value, Value = x })
|
---|
| 845 | .ToDictionary(x => x.Key, x => x.Value);
|
---|
[13649] | 846 | foreach (var relevantRuns in knowledgeBase.GroupBy(x => algorithmId2RunMapping.GetBySecond(x).Single())) {
|
---|
[13774] | 847 | var problemRuns = relevantRuns.GroupBy(x => ((StringValue)x.Parameters["Problem Name"]).Value).ToList();
|
---|
| 848 | var ds = new ModifiableDataset();
|
---|
| 849 | ds.AddVariable("Problem Name", new List<string>());
|
---|
[13787] | 850 | foreach (var pc in characteristics)
|
---|
| 851 | ds.AddVariable(pc, new List<double>());
|
---|
[13774] | 852 | ds.AddVariable("ERT", new List<double>());
|
---|
| 853 | foreach (var pr in problemRuns) {
|
---|
| 854 | var prob = problemMap[pr.Key];
|
---|
[13787] | 855 | var f = features[prob];
|
---|
| 856 | var max = ((BoolValue)prob.Parameters["Maximization"]).Value;
|
---|
[13774] | 857 | var bkq = ((DoubleValue)prob.Parameters["BestKnownQuality"]).Value;
|
---|
[13797] | 858 | var ert = ExpectedRuntimeHelper.CalculateErt(pr.ToList(), "QualityPerEvaluations", GetTarget(bkq, target, max), max).ExpectedRuntime;
|
---|
[13803] | 859 | if (double.IsInfinity(ert)) ert = int.MaxValue;
|
---|
[13787] | 860 | ds.AddRow(new object[] { pr.Key }.Concat(f.Cast<object>()).Concat(new object[] { ert }));
|
---|
[12860] | 861 | }
|
---|
[13787] | 862 | var datAnalysisData = new RegressionProblemData(ds, characteristics, "ERT");
|
---|
[13774] | 863 | var result = new RegressionProblem() {
|
---|
| 864 | Name = algorithmId2AlgorithmInstanceMapping.GetByFirst(relevantRuns.Key).Name
|
---|
| 865 | };
|
---|
| 866 | result.ProblemDataParameter.Value = datAnalysisData;
|
---|
| 867 | yield return result;
|
---|
[12860] | 868 | }
|
---|
[13774] | 869 | }
|
---|
[12842] | 870 |
|
---|
[13787] | 871 | public IEnumerable<IClassificationProblem> GetClassificationProblemPerAlgorithmInstance(double target, string[] characteristics) {
|
---|
| 872 | if (Problem == null) yield break;
|
---|
| 873 |
|
---|
| 874 | var classes = GetPerformanceClasses(target, 5);
|
---|
| 875 | var features = GetProblemCharacteristics(characteristics);
|
---|
| 876 |
|
---|
| 877 | foreach (var alg in AlgorithmInstances) {
|
---|
| 878 | var ds = new ModifiableDataset();
|
---|
| 879 | ds.AddVariable("Problem Name", new List<string>());
|
---|
| 880 | foreach (var pc in characteristics)
|
---|
| 881 | ds.AddVariable(pc, new List<double>());
|
---|
| 882 | ds.AddVariable("Class", new List<double>());
|
---|
| 883 |
|
---|
| 884 | foreach (var c in classes) {
|
---|
| 885 | int cls;
|
---|
| 886 | if (c.Value.TryGetValue(algorithmId2AlgorithmInstanceMapping.GetBySecond(alg), out cls)) {
|
---|
| 887 | ds.AddRow(new object[] { ((StringValue)c.Key.Parameters["Problem Name"]).Value }
|
---|
| 888 | .Concat(features[c.Key].Cast<object>()).Concat(new object[] { cls }));
|
---|
| 889 | }
|
---|
| 890 | }
|
---|
| 891 | var datAnalysisData = new ClassificationProblemData(ds, characteristics, "Class");
|
---|
| 892 | var result = new ClassificationProblem() {
|
---|
| 893 | Name = alg.Name
|
---|
| 894 | };
|
---|
| 895 | result.ProblemDataParameter.Value = datAnalysisData;
|
---|
| 896 | yield return result;
|
---|
| 897 | }
|
---|
[12842] | 898 | }
|
---|
| 899 |
|
---|
[13787] | 900 | public Dictionary<IRun, double> GetProblemDistances(string[] characteristics) {
|
---|
| 901 | var result = new Dictionary<IRun, double>();
|
---|
[13759] | 902 | var currentInstance = problemId2ProblemInstanceMapping.GetByFirst(Problem.ProblemId);
|
---|
[13787] | 903 | var features = GetProblemCharacteristics(characteristics);
|
---|
| 904 | var cF = features[currentInstance];
|
---|
| 905 | foreach (var b in ProblemInstances) {
|
---|
| 906 | if (b == currentInstance) continue;
|
---|
| 907 | var sum = features[b].Select((t, f) => (cF[f] - t) * (cF[f] - t)).Sum();
|
---|
| 908 | result[b] = Math.Sqrt(sum);
|
---|
[13757] | 909 | }
|
---|
[13759] | 910 | return result;
|
---|
[13757] | 911 | }
|
---|
| 912 |
|
---|
[13787] | 913 | public Dictionary<IRun, Dictionary<long, int>> GetPerformanceClasses(double target, int nClasses) {
|
---|
| 914 | var result = new Dictionary<IRun, Dictionary<long, int>>();
|
---|
| 915 | var problemMap = ProblemInstances.Select(x => new { Key = ((StringValue)x.Parameters["Problem Name"]).Value, Value = x })
|
---|
| 916 | .ToDictionary(x => x.Key, x => x.Value);
|
---|
| 917 | foreach (var pr in KnowledgeBase.GroupBy(x => ((StringValue)x.Parameters["Problem Name"]).Value).ToList()) {
|
---|
| 918 | var bkq = ((DoubleValue)problemMap[pr.Key].Parameters["BestKnownQuality"]).Value;
|
---|
| 919 | var max = ((BoolValue)problemMap[pr.Key].Parameters["Maximization"]).Value;
|
---|
| 920 |
|
---|
| 921 | result[problemMap[pr.Key]] = new Dictionary<long, int>();
|
---|
| 922 |
|
---|
[17175] | 923 | var values = pr.Select(x => {
|
---|
| 924 | IItem item = null;
|
---|
| 925 | if (x.Results.TryGetValue("QualityPerEvaluations", out item)) {
|
---|
| 926 | var idt = (IndexedDataTable<double>)item;
|
---|
| 927 | return Tuple.Create(x, idt.Rows.First().Values.AsEnumerable());
|
---|
| 928 | }
|
---|
| 929 | if (x.Results.TryGetValue("QualityPerClock", out item)) {
|
---|
| 930 | var idt = (IndexedDataTable<double>)item;
|
---|
| 931 | return Tuple.Create(x, idt.Rows.First().Values.AsEnumerable());
|
---|
| 932 | }
|
---|
| 933 | return null;
|
---|
| 934 | })
|
---|
| 935 | .Where(x => x != null)
|
---|
| 936 | .GroupBy(x => algorithmId2RunMapping.GetBySecond(x.Item1).Single())
|
---|
| 937 | .ToDictionary(x => x.Key, x => Math.Log10(ExpectedRuntimeHelper.CalculateErt(x.Select(y => y.Item2), GetTarget(bkq, target, max), max).ExpectedRuntime));
|
---|
[13803] | 938 | var ranks = ClusteringHelper<long>.Cluster(nClasses, values, x => double.IsInfinity(x.Value))
|
---|
[13794] | 939 | .GetByCluster().ToList();
|
---|
| 940 | foreach (var c in ranks) {
|
---|
| 941 | foreach (var a in c.Value)
|
---|
[13797] | 942 | result[problemMap[pr.Key]][a.Key] = c.Key;
|
---|
[13787] | 943 | }
|
---|
[13759] | 944 | }
|
---|
[13787] | 945 | return result;
|
---|
[13757] | 946 | }
|
---|
| 947 |
|
---|
[13797] | 948 | public double GetTarget(double bestKnownQuality, double target, bool maximization) {
|
---|
| 949 | return bestKnownQuality * (maximization ? (1 - target) : (1 + target));
|
---|
[13787] | 950 | }
|
---|
| 951 |
|
---|
[13718] | 952 | public event EventHandler<EventArgs<IProgress>> DownloadStarted;
|
---|
| 953 | private void OnDownloadStarted(IProgress progress) {
|
---|
| 954 | var handler = DownloadStarted;
|
---|
| 955 | if (handler != null) handler(this, new EventArgs<IProgress>(progress));
|
---|
| 956 | }
|
---|
[13722] | 957 |
|
---|
| 958 | public event EventHandler<EventArgs<IAlgorithm>> AlgorithmInstanceStarted;
|
---|
| 959 | private void OnAlgorithmInstanceStarted(IAlgorithm instance) {
|
---|
| 960 | var handler = AlgorithmInstanceStarted;
|
---|
| 961 | if (handler != null) handler(this, new EventArgs<IAlgorithm>(instance));
|
---|
| 962 | }
|
---|
[13757] | 963 |
|
---|
[13787] | 964 | public event EventHandler RecommendationModelChanged;
|
---|
| 965 | private void OnRecommenderModelChanged() {
|
---|
| 966 | var handler = RecommendationModelChanged;
|
---|
| 967 | if (handler != null) handler(this, EventArgs.Empty);
|
---|
| 968 | }
|
---|
| 969 |
|
---|
[13794] | 970 | public IEnumerable<KeyValuePair<IAlgorithm, double>> GetAlgorithmInstanceRanking() {
|
---|
[13791] | 971 | return RecommendationModel.GetRanking(ProblemInstances.Single(IsCurrentInstance));
|
---|
[13787] | 972 | }
|
---|
[12842] | 973 | }
|
---|
| 974 | }
|
---|