Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2457_ExpertSystem/HeuristicLab.Encodings.BinaryVectorEncoding/3.3/SolutionModel/Univariate/UnivariateModelTrainingOperator.cs @ 16101

Last change on this file since 16101 was 14776, checked in by abeham, 8 years ago

#2457: working on MemPR integration

File size: 5.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Operators;
28using HeuristicLab.Optimization;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31
32namespace HeuristicLab.Encodings.BinaryVectorEncoding.SolutionModel {
33  public enum ModelBiasOptions {
34    Unbiased,
35    RankBiased,
36    FitnessBiased
37  };
38
39  [Item("Univariate Model Training Operator", "Adds a univariate solution sampling model to the scope.")]
40  [StorableClass]
41  public class UnivariateModelTrainingOperator : InstrumentedOperator, IStochasticOperator, ISingleObjectiveOperator {
42
43    public ILookupParameter<IRandom> RandomParameter {
44      get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
45    }
46
47    public ILookupParameter<BoolValue> MaximizationParameter {
48      get { return (ILookupParameter<BoolValue>)Parameters["Maximization"]; }
49    }
50
51    public IScopeTreeLookupParameter<BinaryVector> BinaryVectorParameter {
52      get { return (IScopeTreeLookupParameter<BinaryVector>)Parameters["BinaryVector"]; }
53    }
54
55    public IScopeTreeLookupParameter<DoubleValue> QualityParameter {
56      get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
57    }
58
59    public ILookupParameter<UnivariateModel> ModelParameter {
60      get { return (ILookupParameter<UnivariateModel>)Parameters["Model"]; }
61    }
62
63    public IValueParameter<EnumValue<ModelBiasOptions>> ModelBiasParameter {
64      get { return (IValueParameter<EnumValue<ModelBiasOptions>>)Parameters["ModelBias"]; }
65    }
66
67    public ModelBiasOptions ModelBias {
68      get { return ModelBiasParameter.Value.Value; }
69      set { ModelBiasParameter.Value.Value = value; }
70    }
71
72    [StorableConstructor]
73    protected UnivariateModelTrainingOperator(bool deserializing) : base() { }
74    protected UnivariateModelTrainingOperator(UnivariateModelTrainingOperator original, Cloner cloner)
75      : base(original, cloner) { }
76    public UnivariateModelTrainingOperator() {
77      Parameters.Add(new LookupParameter<IRandom>("Random", "The random number generator to use for sampling from the model."));
78      Parameters.Add(new LookupParameter<BoolValue>("Maximization", "Whether or not solution qualities are to be maximized."));
79      Parameters.Add(new ScopeTreeLookupParameter<BinaryVector>("BinaryVector", "The population of solutions to create the model."));
80      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The fitness values of the solutions."));
81      Parameters.Add(new LookupParameter<UnivariateModel>("Model", "The model that is being trained by this operator."));
82      Parameters.Add(new ValueParameter<EnumValue<ModelBiasOptions>>("ModelBias", "The type of bias that is used to created the model.", new EnumValue<ModelBiasOptions>(ModelBiasOptions.Unbiased)));
83    }
84
85    public override IDeepCloneable Clone(Cloner cloner) {
86      return new UnivariateModelTrainingOperator(this, cloner);
87    }
88
89    public override IOperation InstrumentedApply() {
90      var random = RandomParameter.ActualValue;
91      var population = BinaryVectorParameter.ActualValue;
92      var biasType = ModelBiasParameter.Value.Value;
93      UnivariateModel model = null;
94      switch (biasType) {
95        case ModelBiasOptions.Unbiased:
96          model = UnivariateModelTrainer.TrainUnbiased(random, population);
97          break;
98        case ModelBiasOptions.RankBiased: {
99            var qualities = QualityParameter.ActualValue;
100            var maximization = MaximizationParameter.ActualValue.Value;
101            model = UnivariateModelTrainer.TrainWithRankBias(random, maximization, population,
102              qualities.Select(x => x.Value));
103          }
104          break;
105        case ModelBiasOptions.FitnessBiased: {
106            var qualities = QualityParameter.ActualValue;
107            var maximization = MaximizationParameter.ActualValue.Value;
108            model = UnivariateModelTrainer.TrainWithFitnessBias(random, maximization, population,
109              qualities.Select(x => x.Value));
110          }
111          break;
112        default: throw new InvalidOperationException(string.Format("Unknown bias type {0}", biasType));
113      }
114      ModelParameter.ActualValue = model;
115      return base.InstrumentedApply();
116    }
117  }
118}
Note: See TracBrowser for help on using the repository browser.