Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2457_ExpertSystem/HeuristicLab.Encodings.BinaryVectorEncoding/3.3/SolutionModel/Univariate/UnivariateModelTrainer.cs @ 17717

Last change on this file since 17717 was 14776, checked in by abeham, 8 years ago

#2457: working on MemPR integration

File size: 7.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Core;
26
27namespace HeuristicLab.Encodings.BinaryVectorEncoding.SolutionModel {
28  public static class UnivariateModelTrainer {
29    /// <summary>
30    /// Creates a univariate sampling model out of a ranked population.
31    /// The first solution in <paramref name="rankedPopulation"/> is the
32    /// highest influential one, the last solution has the least influence.
33    /// </summary>
34    /// <param name="random">The model is stochastic and will use this RNG for sampling.</param>
35    /// <param name="maximization">Whether higher or lower qualities are better</param>
36    /// <param name="population">The population that is ranked from highest influential to least influential, e.g. best to worst.</param>
37    /// <param name="qualities">The solution quality of the respective solution.</param>
38    /// <returns>The sampling model which is created with the given population.</returns>
39    public static UnivariateModel TrainWithRankBias(IRandom random, bool maximization, IEnumerable<BinaryVector> population, IEnumerable<double> qualities) {
40      var popSize = 0;
41      double[] model = null;
42      var pop = population.Zip(qualities, (b, q) => new { Solution = b, Fitness = q });
43      foreach (var ind in maximization ? pop.OrderBy(x => x.Fitness) : pop.OrderByDescending(x => x.Fitness)) {
44        // from worst to best, worst solution has 1 vote, best solution N votes
45        popSize++;
46        if (model == null) model = new double[ind.Solution.Length];
47        for (var x = 0; x < model.Length; x++) {
48          if (ind.Solution[x]) model[x] += popSize;
49        }
50      }
51      if (model == null) throw new ArgumentException("Cannot train model from empty population.");
52      // normalize to [0;1]
53      var factor = 2.0 / (popSize + 1);
54      for (var i = 0; i < model.Length; i++) {
55        model[i] *= factor / popSize;
56      }
57      return new UnivariateModel(random, model);
58    }
59
60    /// <summary>
61    /// Creates a univariate sampling model out of solutions and their given fitness.
62    /// The best solution's influence is proportional to its fitness, while the worst
63    /// solution does not have an influence at all (except if the fitness of worst and
64    /// best are equal).
65    /// </summary>
66    /// <param name="random">The model is stochastic and makes use of this RNG instance for sampling.</param>
67    /// <param name="maximization">Whether higher fitness values are better or lower ones.</param>
68    /// <param name="population">The solutions that will be used to create the model.</param>
69    /// <param name="qualities">The solutions' associated qualities.</param>
70    /// <returns>The sampling model which is created with the given population.</returns>
71    public static UnivariateModel TrainWithFitnessBias(IRandom random, bool maximization, IEnumerable<BinaryVector> population, IEnumerable<double> qualities) {
72      var proportions = PrepareProportional(qualities, true, !maximization);
73      var factor = 1.0 / proportions.Sum();
74      double[] model = null;
75      foreach (var ind in population.Zip(proportions, (p, q) => new { Solution = p, Proportion = q })) {
76        if (model == null) model = new double[ind.Solution.Length];
77        for (var x = 0; x < model.Length; x++) {
78          if (ind.Solution[x]) model[x] += ind.Proportion * factor;
79        }
80      }
81      if (model == null) throw new ArgumentException("Cannot train model from empty population.");
82      return new UnivariateModel(random, model);
83    }
84
85    /// <summary>
86    /// Creates a univariate sampling model out of solutions. Each of the solutions
87    /// has the same influence on the model.
88    /// </summary>
89    /// <param name="random">The model is stochastic and will make use of this RNG instance.</param>
90    /// <param name="population">The solutions that are used to create the model.</param>
91    /// <returns>The model created from the population.</returns>
92    public static UnivariateModel TrainUnbiased(IRandom random, IEnumerable<BinaryVector> population) {
93      double[] model = null;
94      var popSize = 0;
95      foreach (var p in population) {
96        popSize++;
97        if (model == null) model = new double[p.Length];
98        for (var x = 0; x < model.Length; x++) {
99          if (p[x]) model[x]++;
100        }
101      }
102      if (model == null) throw new ArgumentException("Cannot train model from empty population.");
103      // normalize to [0;1]
104      var factor = 1.0 / popSize;
105      for (var x = 0; x < model.Length; x++) {
106        model[x] *= factor;
107      }
108      return new UnivariateModel(random, model);
109    }
110
111    // TODO: make PrepareProportional public in EnumerableExtensions
112    private static double[] PrepareProportional(IEnumerable<double> weights, bool windowing, bool inverseProportional) {
113      double maxValue = double.MinValue, minValue = double.MaxValue;
114      double[] valueArray = weights.ToArray();
115
116      for (int i = 0; i < valueArray.Length; i++) {
117        if (valueArray[i] > maxValue) maxValue = valueArray[i];
118        if (valueArray[i] < minValue) minValue = valueArray[i];
119      }
120      if (minValue == maxValue) {  // all values are equal
121        for (int i = 0; i < valueArray.Length; i++) {
122          valueArray[i] = 1.0;
123        }
124      } else {
125        if (windowing) {
126          if (inverseProportional) InverseProportionalScale(valueArray, maxValue);
127          else ProportionalScale(valueArray, minValue);
128        } else {
129          if (minValue < 0.0) throw new InvalidOperationException("Proportional selection without windowing does not work with values < 0.");
130          if (inverseProportional) InverseProportionalScale(valueArray, 2 * maxValue);
131        }
132      }
133      return valueArray;
134    }
135    private static void ProportionalScale(double[] values, double minValue) {
136      for (int i = 0; i < values.Length; i++) {
137        values[i] = values[i] - minValue;
138      }
139    }
140    private static void InverseProportionalScale(double[] values, double maxValue) {
141      for (int i = 0; i < values.Length; i++) {
142        values[i] = maxValue - values[i];
143      }
144    }
145  }
146}
Note: See TracBrowser for help on using the repository browser.