Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2457_ExpertSystem/HeuristicLab.Encodings.BinaryVectorEncoding/3.3/SolutionModel/Univariate/UnivariateModel.cs @ 16101

Last change on this file since 16101 was 14776, checked in by abeham, 8 years ago

#2457: working on MemPR integration

File size: 2.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Optimization;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Encodings.BinaryVectorEncoding.SolutionModel {
30  [Item("Univariate solution model (binary)", "")]
31  [StorableClass]
32  public sealed class UnivariateModel : Item, ISolutionModel<BinaryVector> {
33    [Storable]
34    public DoubleArray Probabilities { get; set; }
35    [Storable]
36    public IRandom Random { get; set; }
37
38    [StorableConstructor]
39    private UnivariateModel(bool deserializing) : base(deserializing) { }
40    private UnivariateModel(UnivariateModel original, Cloner cloner)
41      : base(original, cloner) {
42      Probabilities = cloner.Clone(original.Probabilities);
43      Random = cloner.Clone(original.Random);
44    }
45    public UnivariateModel(IRandom random, int N) : this(random, Enumerable.Range(0, N).Select(x => 0.5).ToArray()) { }
46    public UnivariateModel(IRandom random, double[] probabilities) {
47      Probabilities = new DoubleArray(probabilities);
48      Random = random;
49    }
50    public UnivariateModel(IRandom random, DoubleArray probabilties) {
51      Probabilities = probabilties;
52      Random = random;
53    }
54
55    public override IDeepCloneable Clone(Cloner cloner) {
56      return new UnivariateModel(this, cloner);
57    }
58
59    public BinaryVector Sample() {
60      var vec = new BinaryVector(Probabilities.Length);
61      for (var i = 0; i < Probabilities.Length; i++)
62        vec[i] = Random.NextDouble() < Probabilities[i];
63      return vec;
64    }
65  }
66}
Note: See TracBrowser for help on using the repository browser.