1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Encodings.BinaryVectorEncoding.SolutionModel {
|
---|
30 | [Item("Univariate solution model (binary)", "")]
|
---|
31 | [StorableClass]
|
---|
32 | public sealed class UnivariateModel : Item, ISolutionModel<BinaryVector> {
|
---|
33 | [Storable]
|
---|
34 | public DoubleArray Probabilities { get; set; }
|
---|
35 | [Storable]
|
---|
36 | public IRandom Random { get; set; }
|
---|
37 |
|
---|
38 | [StorableConstructor]
|
---|
39 | private UnivariateModel(bool deserializing) : base(deserializing) { }
|
---|
40 | private UnivariateModel(UnivariateModel original, Cloner cloner)
|
---|
41 | : base(original, cloner) {
|
---|
42 | Probabilities = cloner.Clone(original.Probabilities);
|
---|
43 | Random = cloner.Clone(original.Random);
|
---|
44 | }
|
---|
45 | public UnivariateModel(IRandom random, int N) : this(random, Enumerable.Range(0, N).Select(x => 0.5).ToArray()) { }
|
---|
46 | public UnivariateModel(IRandom random, double[] probabilities) {
|
---|
47 | Probabilities = new DoubleArray(probabilities);
|
---|
48 | Random = random;
|
---|
49 | }
|
---|
50 | public UnivariateModel(IRandom random, DoubleArray probabilties) {
|
---|
51 | Probabilities = probabilties;
|
---|
52 | Random = random;
|
---|
53 | }
|
---|
54 |
|
---|
55 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
56 | return new UnivariateModel(this, cloner);
|
---|
57 | }
|
---|
58 |
|
---|
59 | public BinaryVector Sample() {
|
---|
60 | var vec = new BinaryVector(Probabilities.Length);
|
---|
61 | for (var i = 0; i < Probabilities.Length; i++)
|
---|
62 | vec[i] = Random.NextDouble() < Probabilities[i];
|
---|
63 | return vec;
|
---|
64 | }
|
---|
65 | }
|
---|
66 | }
|
---|