Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2457_ExpertSystem/HeuristicLab.Analysis/3.3/SelfOrganizingMaps/RelationalSOM.cs @ 16189

Last change on this file since 16189 was 13750, checked in by abeham, 9 years ago

#2457: Added SOM projection for problem instances, fixed a bug (learningRadius was not used)

File size: 5.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Core;
23using HeuristicLab.Data;
24using HeuristicLab.Random;
25using System;
26using System.Linq;
27
28namespace HeuristicLab.Analysis.SelfOrganizingMaps {
29  public static class RelationalSOM {
30    /// <summary>
31    /// This is the online algorithm described in
32    /// Olteanu, M. and Villa-Vialaneix, N. 2015.
33    /// On-line relational and multiple relational SOM.
34    /// Neurocomputing 147, pp. 15-30.
35    /// </summary>
36    /// <param name="dissimilarities">The full NxN matrix containing all dissimilarities between N points.</param>
37    /// <param name="random">The random number generator to use.</param>
38    /// <param name="somSize">The length of a side of the SOM grid (there are somSize * somSize neurons).</param>
39    /// <param name="iterations">The amount of iterations to perform in learning.</param>
40    /// <param name="learningRate">The initial learning rate.</param>
41    /// <param name="learningRadius">The initial learning radius.</param>
42    /// <param name="jittering">If the final coordinates should be jittered slightly within the grid.</param>
43    /// <returns>A matrix of coordinates having N rows and 2 columns.</returns>
44    public static DoubleMatrix Map(DoubleMatrix dissimilarities, IRandom random = null, int somSize = 5, int iterations = 100, double learningRate = double.NaN, double learningRadius = 5.0, bool jittering = true) {
45      if (random == null) random = new MersenneTwister();
46      var K = somSize * somSize;
47      var N = dissimilarities.Rows;
48      if (double.IsNaN(learningRate)) learningRate = 1.0 / Math.Sqrt(2.0 * N);
49      var fixedLearningRate = learningRate / 10.0;
50      var varLearningRate = 9.0 * fixedLearningRate;
51      Func<int, int> getX = (neuron) => neuron % somSize;
52      Func<int, int> getY = (neuron) => neuron / somSize;
53      Func<int, int, int, int, double> neighborhood = (maxIter, iter, k, bmu) => {
54        var sigma = learningRadius * ((maxIter - iter) / (double)maxIter) + 0.0001;
55        var xK = getX(k);
56        var yK = getY(k);
57        var xW = getX(bmu);
58        var yW = getY(bmu);
59        var d = (xK - xW) * (xK - xW) + (yK - yW) * (yK - yW);
60        return Math.Exp(-d / (2.0 * sigma * sigma));
61      };
62      var alphas = Enumerable.Range(0, K).Select(k => Enumerable.Range(0, N).Select(_ => random.NextDouble()).ToArray()).ToArray();
63      // normalize s.t. sum(alphas[k]) = 1
64      for (var k = 0; k < K; k++) {
65        var sum = alphas[k].Sum();
66        for (var i = 0; i < alphas[k].Length; i++) alphas[k][i] /= sum;
67      }
68      var oldAlphas = alphas.Select(x => (double[])x.Clone()).ToArray();
69
70      for (var iter = 0; iter < iterations; iter++) {
71        learningRate = varLearningRate * ((iterations - iter) / (double)iterations) + fixedLearningRate;
72        var pointShuffle = Enumerable.Range(0, N).Shuffle(random).ToArray();
73        for (var p = 0; p < N; p++) {
74          var i = pointShuffle[p];
75          var bmu = GetBestMatchingUnit(dissimilarities, alphas, i);
76
77          for (var k = 0; k < K; k++) {
78            for (var j = 0; j < N; j++) {
79              alphas[k][j] = oldAlphas[k][j] + learningRate * neighborhood(iterations, iter, k, bmu) * ((i == j ? 1.0 : 0.0) - oldAlphas[k][j]);
80            }
81          }
82        }
83        for (var k = 0; k < K; k++) {
84          for (var j = 0; j < N; j++) {
85            oldAlphas[k][j] = alphas[k][j];
86          }
87        }
88      }
89
90      var result = new DoubleMatrix(N, 2);
91      for (var i = 0; i < N; i++) {
92        var bmu = GetBestMatchingUnit(dissimilarities, alphas, i);
93        if (!jittering) {
94          result[i, 0] = getX(bmu);
95          result[i, 1] = getY(bmu);
96        } else {
97          result[i, 0] = getX(bmu) + random.NextDouble() * 0.8;
98          result[i, 1] = getY(bmu) + random.NextDouble() * 0.8;
99        }
100      }
101      return result;
102    }
103
104    private static int GetBestMatchingUnit(DoubleMatrix D, double[][] alphas, int i) {
105      var bmu = -1;
106      var minV = double.MaxValue;
107      for (var k = 0; k < alphas.Length; k++) {
108        var Daki = 0.0;
109        var akDak = 0.0;
110        for (var r = 0; r < D.Rows; r++) {
111          var Dakr = 0.0;
112          for (var s = 0; s < D.Rows; s++) {
113            Dakr += D[r, s] * alphas[k][s];
114          }
115          if (r == i) Daki = Dakr;
116          akDak += alphas[k][r] * Dakr;
117        }
118        var v = Daki - 0.5 * akDak;
119        if (v < minV) {
120          bmu = k;
121          minV = v;
122        }
123      }
124      return bmu;
125    }
126  }
127}
Note: See TracBrowser for help on using the repository browser.