1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using System;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Linq;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Analysis {
|
---|
28 | /// <summary>
|
---|
29 | /// Implements the Ckmeans.1d.dp method. It is described in the paper:
|
---|
30 | /// Haizhou Wang and Mingzhou Song. 2011.
|
---|
31 | /// Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming
|
---|
32 | /// The R Journal Vol. 3/2, pp. 29-33.
|
---|
33 | /// available at https://journal.r-project.org/archive/2011-2/RJournal_2011-2_Wang+Song.pdf
|
---|
34 | /// </summary>
|
---|
35 | public class CkMeans1D {
|
---|
36 | /// <summary>
|
---|
37 | /// Clusters the 1-dimensional data given in <paramref name="estimations"/>.
|
---|
38 | /// </summary>
|
---|
39 | /// <param name="estimations">The 1-dimensional data that should be clustered.</param>
|
---|
40 | /// <param name="k">The maximum number of clusters.</param>
|
---|
41 | /// <param name="clusterValues">A vector of the same length as estimations that assigns to each point a cluster id.</param>
|
---|
42 | /// <returns>A sorted list of cluster centroids and corresponding cluster ids.</returns>
|
---|
43 | public static SortedList<double, int> Cluster(double[] estimations, int k, out int[] clusterValues) {
|
---|
44 | int nPoints = estimations.Length;
|
---|
45 | var distinct = estimations.Distinct().OrderBy(x => x).ToArray();
|
---|
46 | var max = distinct.Max();
|
---|
47 | if (distinct.Length <= k) {
|
---|
48 | var dict = distinct.Select((v, i) => new { Index = i, Value = v }).ToDictionary(x => x.Value, y => y.Index);
|
---|
49 | for (int i = distinct.Length; i < k; i++)
|
---|
50 | dict.Add(max + i - distinct.Length + 1, i);
|
---|
51 |
|
---|
52 | clusterValues = new int[nPoints];
|
---|
53 | for (int i = 0; i < nPoints; i++)
|
---|
54 | if (!dict.ContainsKey(estimations[i])) clusterValues[i] = 0;
|
---|
55 | else clusterValues[i] = dict[estimations[i]];
|
---|
56 |
|
---|
57 | return new SortedList<double, int>(dict);
|
---|
58 | }
|
---|
59 |
|
---|
60 | var n = distinct.Length;
|
---|
61 | var D = new double[n, k];
|
---|
62 | var B = new int[n, k];
|
---|
63 |
|
---|
64 | for (int m = 0; m < k; m++) {
|
---|
65 | for (int j = m; j <= n - k + m; j++) {
|
---|
66 | if (m == 0)
|
---|
67 | D[j, m] = SumOfSquaredDistances(distinct, 0, j + 1);
|
---|
68 | else {
|
---|
69 | var minD = double.MaxValue;
|
---|
70 | var minI = 0;
|
---|
71 | for (int i = 1; i <= j; i++) {
|
---|
72 | var d = D[i - 1, m - 1] + SumOfSquaredDistances(distinct, i, j + 1);
|
---|
73 | if (d < minD) {
|
---|
74 | minD = d;
|
---|
75 | minI = i;
|
---|
76 | }
|
---|
77 | }
|
---|
78 | D[j, m] = minD;
|
---|
79 | B[j, m] = minI;
|
---|
80 | }
|
---|
81 | }
|
---|
82 | }
|
---|
83 |
|
---|
84 | var centers = new SortedList<double, int>();
|
---|
85 | var upper = B[n - 1, k - 1];
|
---|
86 | var c = Mean(distinct, upper, n);
|
---|
87 | centers.Add(c, k - 1);
|
---|
88 | for (int i = k - 2; i >= 0; i--) {
|
---|
89 | var lower = B[upper - 1, i];
|
---|
90 | var c2 = Mean(distinct, lower, upper);
|
---|
91 | centers.Add(c2, i);
|
---|
92 | upper = lower;
|
---|
93 | }
|
---|
94 |
|
---|
95 | clusterValues = new int[nPoints];
|
---|
96 | for (int i = 0; i < estimations.Length; i++) {
|
---|
97 | clusterValues[i] = centers.MinItems(x => Math.Abs(estimations[i] - x.Key)).First().Value;
|
---|
98 | }
|
---|
99 |
|
---|
100 | return centers;
|
---|
101 | }
|
---|
102 |
|
---|
103 | private static double SumOfSquaredDistances(double[] x, int start, int end) {
|
---|
104 | if (start == end) throw new InvalidOperationException();
|
---|
105 | if (start + 1 == end) return 0.0;
|
---|
106 | double mean = 0.0;
|
---|
107 | for (int i = start; i < end; i++) {
|
---|
108 | mean += x[i];
|
---|
109 | }
|
---|
110 | mean /= (end - start);
|
---|
111 | var sum = 0.0;
|
---|
112 | for (int i = start; i < end; i++) {
|
---|
113 | sum += (x[i] - mean) * (x[i] - mean);
|
---|
114 | }
|
---|
115 | return sum;
|
---|
116 | }
|
---|
117 |
|
---|
118 | private static double Mean(double[] x, int start, int end) {
|
---|
119 | if (start == end) throw new InvalidOperationException();
|
---|
120 | double mean = 0.0;
|
---|
121 | for (int i = start; i < end; i++) {
|
---|
122 | mean += x[i];
|
---|
123 | }
|
---|
124 | mean /= (end - start);
|
---|
125 | return mean;
|
---|
126 | }
|
---|
127 | }
|
---|
128 | }
|
---|