Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2457_ExpertSystem/HeuristicLab.Analysis.FitnessLandscape/3.3/Utilities/CurveAnalysis.cs @ 17357

Last change on this file since 17357 was 16955, checked in by abeham, 6 years ago

#2457: worked on thesis

File size: 6.8 KB
RevLine 
[16137]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25
26namespace HeuristicLab.Analysis.FitnessLandscape {
27  public static class CurveAnalysis<T> {
[16955]28    public static CurveAnalysisResult GetCharacteristics(IEnumerable<List<Tuple<T, double>>> trajectories, Func<T, T, double> distFunc) {
29      var traj = trajectories.Where(x => x.Count > 5).ToList();
30      if (traj.Count == 0) return new CurveAnalysisResult(0, 0, 0, new[] { 0.0, 0.0, 0.0 }, new[] { 0.0, 0.0, 0.0 }, new[] { 0.0, 0.0, 0.0 });
[16137]31
[16955]32      var symbols = GetSymbols(traj);
33      var f1 = traj.Select(path => ApproximateDerivative(path, distFunc).ToList()).ToList();
[16137]34      var f2 = f1.Select(d1 => ApproximateDerivative(d1, distFunc).ToList()).ToList();
35
36      var sharpness = f1.Average(x => x.Average(y => Math.Abs(y.Item2)));
37      var bumpiness = 0.0;
38      var flatness = 0.0;
39      var count = 0;
40      for (var p = 0; p < f2.Count; p++) {
41        if (f2[p].Count <= 2) continue;
42        count++;
43        var bump = 0;
44        var flat = 0;
45        for (var i = 0; i < f2[p].Count - 1; i++) {
46          if ((f2[p][i].Item2 > 0 && f2[p][i + 1].Item2 < 0) || (f2[p][i].Item2 < 0 && f2[p][i + 1].Item2 > 0)) {
47            bump++;
48          } else if (f2[p][i].Item2 == 0) {
49            flat++;
50          }
51        }
52        bumpiness += bump / (f2[p].Count - 1.0);
53        flatness += flat / (f2[p].Count - 1.0);
54      }
55      bumpiness /= count;
56      flatness /= count;
57      var per = new[] { 25, 50, 75 };
58      return new CurveAnalysisResult(sharpness, bumpiness, flatness,
59        per.Select(p => symbols.Downward.GetPercentileOrDefault(p, 0)).ToArray(),
60        per.Select(p => symbols.Neutral.GetPercentileOrDefault(p, 0)).ToArray(),
61        per.Select(p => symbols.Upward.GetPercentileOrDefault(p, 0)).ToArray());
62    }
63
64    private static Symbols GetSymbols(List<List<Tuple<T, double>>> trajectories) {
65      var sym = new Symbols();
66      foreach (var t in trajectories) {
67        var prev = t[0];
68        for (var i = 1; i < t.Count; i++) {
69          sym.Add(i / (double)t.Count, t[i].Item2, prev.Item2);
70          prev = t[i];
71        }
72      }
73      return sym;
74    }
75
76    private static IEnumerable<Tuple<T, double>> ApproximateDerivative(IEnumerable<Tuple<T, double>> data, Func<T, T, double> distFunc) {
77      Tuple<T, double> prev = null, prev2 = null;
78      foreach (var d in data) {
79        if (prev == null) {
80          prev = d;
81          continue;
82        }
83        if (prev2 == null) {
84          prev2 = prev;
85          prev = d;
86          continue;
87        }
88        var dist = distFunc(prev2.Item1, d.Item1);
89        yield return Tuple.Create(prev.Item1, (d.Item2 - prev2.Item2) / dist);
90        prev2 = prev;
91        prev = d;
92      }
93    }
94  }
95
96  public enum CurveAnalysisFeature { Sharpness, Bumpiness, Flatness,
97                                     DownQ1, DownQ2, DownQ3,
98                                     NeutQ1, NeutQ2, NeutQ3,
99                                     UpQ1, UpQ2, UpQ3 }
100
101  public class CurveAnalysisResult {
102    private Dictionary<CurveAnalysisFeature, double> results = new Dictionary<CurveAnalysisFeature, double>();
103
104    public double GetValue(CurveAnalysisFeature name) {
105      return results[name];
106    }
107
108    public static IEnumerable<CurveAnalysisFeature> AllFeatures {
109      get { return Enum.GetValues(typeof(CurveAnalysisFeature)).Cast<CurveAnalysisFeature>(); }
110    }
111
112    public double[] GetValues() {
113      return AllFeatures.Select(x => results[x]).ToArray();
114    }
115
116    public CurveAnalysisResult(double sharpness, double bumpiness, double flatness, double[] down, double[] neut, double[] up) {
117      foreach (var v in AllFeatures.Zip(new[] { sharpness, bumpiness, flatness }.Concat(down).Concat(neut).Concat(up), (n, v) => Tuple.Create(n, v))) {
118        results[v.Item1] = v.Item2;
119      }
120    }
121  }
122
123  public class Symbols {
124    public Statistics Downward { get; } = new Statistics();
125    public Statistics Neutral { get; } = new Statistics();
126    public Statistics Upward { get; } = new Statistics();
127
128    public void Add(double step, double fit, double prev) {
129      if (fit < prev) Downward.Add(step);
130      else if (fit > prev) Upward.Add(step);
131      else Neutral.Add(step);
132    }
133  }
134
135  public sealed class Statistics {
136    private List<double> values = new List<double>();
137
138    public int Count { get { return values.Count; } }
139
140    public double Min { get; private set; }
141    public double Max { get; private set; }
142    public double Total { get; private set; }
143    public double Mean { get; private set; }
144    public double StdDev { get { return Math.Sqrt(Variance); } }
145    public double Variance { get { return Count > 0 ? variance / Count : 0.0; } }
146   
147    private double variance;
148    private bool sorted = false;
149   
150    public double GetPercentileOrDefault(int p, double @default = default(double)) {
151      if (p < 0 || p > 100) throw new ArgumentOutOfRangeException(nameof(p), p, "Must be in range [0;100]");
152      SortIfNecessary();
153      if (Count == 0) return @default;
154      else if (Count == 1) return values[0];
155      if (p == 100) return values[Count - 1];
156
157      var x = p / 100.0 * (Count - 1);
158      var inte = (int)x;
159      var frac = x - inte;
160
161      return values[inte] + frac * (values[inte + 1] - values[inte]);
162    }
163
164    public void Add(double value) {
165      sorted = false;
166      values.Add(value);
167
168      if (Count == 1) {
169        Min = Max = Mean = Total = value;
170      } else {
171        if (value < Min) Min = value;
172        if (value > Max) Max = value;
173
174        Total += value;
175        var oldMean = Mean;
176        Mean = oldMean + (value - oldMean) / Count;
177        variance = variance + (value - oldMean) * (value - Mean);
178      }
179    }
180
181    public void AddRange(IEnumerable<double> values) {
182      foreach (var v in values) Add(v);
183    }
184
185    private void SortIfNecessary() {
186      if (!sorted) {
187        values.Sort();
188        sorted = true;
189      }
190    }
191  }
192}
Note: See TracBrowser for help on using the repository browser.