[13583] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[7128] | 23 | using System.Collections.Generic;
|
---|
| 24 |
|
---|
[13583] | 25 | namespace HeuristicLab.Analysis.FitnessLandscape {
|
---|
[16096] | 26 | public static class RuggednessCalculator {
|
---|
| 27 | /// <summary>
|
---|
| 28 | /// Calculates statistical correlation length as defined by Hordijk, W., 1996. A measure of landscapes. Evolutionary computation, 4(4), pp.335-360.
|
---|
| 29 | /// </summary>
|
---|
| 30 | /// <param name="qualities">The quality trail observed.</param>
|
---|
| 31 | /// <param name="acf">The autocorrelation values for each step s, including 0 => acf[0] = 1.</param>
|
---|
| 32 | /// <param name="limit">The statistical limit, correlation length will be the last step before acf falls within this limit. If omitted it is calculated as 2 / sqrt(qualities.Length).</param>
|
---|
| 33 | /// <returns>The statistical correlation length</returns>
|
---|
| 34 | public static int CalculateCorrelationLength(double[] qualities, out double[] acf, double? limit = null) {
|
---|
| 35 | if (!limit.HasValue) limit = 2.0 / Math.Sqrt(qualities.Length);
|
---|
[7128] | 36 | double[] correlations = new double[qualities.Length];
|
---|
| 37 | alglib.corr.corrr1dcircular(qualities, qualities.Length, qualities, qualities.Length, ref correlations);
|
---|
| 38 | double mean = 0;
|
---|
| 39 | double variance = 0;
|
---|
| 40 | double skewness = 0;
|
---|
| 41 | double kurtosis = 0;
|
---|
| 42 | alglib.basestat.samplemoments(qualities, qualities.Length, ref mean, ref variance, ref skewness, ref kurtosis);
|
---|
| 43 | List<double> autocorrelation = new List<double>() { 1.0 };
|
---|
[13583] | 44 | int correlationLength = -1, counter = 1;
|
---|
| 45 | for (; counter < qualities.Length / 2; counter++) {
|
---|
| 46 | double value = correlations[counter] / qualities.Length - mean * mean;
|
---|
[7128] | 47 | if (variance > 0)
|
---|
[13583] | 48 | value = Math.Max(Math.Min(value / variance, 1.0), -1.0);
|
---|
[7128] | 49 | else
|
---|
| 50 | value = 1;
|
---|
| 51 | autocorrelation.Add(value);
|
---|
[16096] | 52 | if (Math.Abs(value) < limit && correlationLength < 0) correlationLength = counter;
|
---|
[7128] | 53 | }
|
---|
| 54 | acf = autocorrelation.ToArray();
|
---|
[13583] | 55 | return correlationLength - 1;
|
---|
[7128] | 56 | }
|
---|
| 57 | }
|
---|
| 58 | }
|
---|