1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.ComponentModel;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Threading;
|
---|
27 | using HeuristicLab.Algorithms.MemPR.Interfaces;
|
---|
28 | using HeuristicLab.Analysis;
|
---|
29 | using HeuristicLab.Common;
|
---|
30 | using HeuristicLab.Core;
|
---|
31 | using HeuristicLab.Data;
|
---|
32 | using HeuristicLab.Optimization;
|
---|
33 | using HeuristicLab.Parameters;
|
---|
34 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
35 | using HeuristicLab.Random;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.Algorithms.MemPR {
|
---|
38 | [Item("MemPR Algorithm", "Base class for MemPR algorithms")]
|
---|
39 | [StorableClass]
|
---|
40 | public abstract class MemPRAlgorithm<TProblem, TSolution, TPopulationContext, TSolutionContext> : BasicAlgorithm, INotifyPropertyChanged
|
---|
41 | where TProblem : class, IItem, ISingleObjectiveHeuristicOptimizationProblem
|
---|
42 | where TSolution : class, IItem
|
---|
43 | where TPopulationContext : MemPRPopulationContext<TProblem, TSolution, TPopulationContext, TSolutionContext>, new()
|
---|
44 | where TSolutionContext : MemPRSolutionContext<TProblem, TSolution, TPopulationContext, TSolutionContext> {
|
---|
45 |
|
---|
46 | public override Type ProblemType {
|
---|
47 | get { return typeof(TProblem); }
|
---|
48 | }
|
---|
49 |
|
---|
50 | public new TProblem Problem {
|
---|
51 | get { return (TProblem)base.Problem; }
|
---|
52 | set { base.Problem = value; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | public override bool SupportsPause {
|
---|
56 | get { return true; }
|
---|
57 | }
|
---|
58 |
|
---|
59 | protected string QualityName {
|
---|
60 | get { return Problem != null && Problem.Evaluator != null ? Problem.Evaluator.QualityParameter.ActualName : null; }
|
---|
61 | }
|
---|
62 |
|
---|
63 | public int? MaximumEvaluations {
|
---|
64 | get {
|
---|
65 | var val = ((OptionalValueParameter<IntValue>)Parameters["MaximumEvaluations"]).Value;
|
---|
66 | return val != null ? val.Value : (int?)null;
|
---|
67 | }
|
---|
68 | set {
|
---|
69 | var param = (OptionalValueParameter<IntValue>)Parameters["MaximumEvaluations"];
|
---|
70 | param.Value = value.HasValue ? new IntValue(value.Value) : null;
|
---|
71 | }
|
---|
72 | }
|
---|
73 |
|
---|
74 | public TimeSpan? MaximumExecutionTime {
|
---|
75 | get {
|
---|
76 | var val = ((OptionalValueParameter<TimeSpanValue>)Parameters["MaximumExecutionTime"]).Value;
|
---|
77 | return val != null ? val.Value : (TimeSpan?)null;
|
---|
78 | }
|
---|
79 | set {
|
---|
80 | var param = (OptionalValueParameter<TimeSpanValue>)Parameters["MaximumExecutionTime"];
|
---|
81 | param.Value = value.HasValue ? new TimeSpanValue(value.Value) : null;
|
---|
82 | }
|
---|
83 | }
|
---|
84 |
|
---|
85 | public double? TargetQuality {
|
---|
86 | get {
|
---|
87 | var val = ((OptionalValueParameter<DoubleValue>)Parameters["TargetQuality"]).Value;
|
---|
88 | return val != null ? val.Value : (double?)null;
|
---|
89 | }
|
---|
90 | set {
|
---|
91 | var param = (OptionalValueParameter<DoubleValue>)Parameters["TargetQuality"];
|
---|
92 | param.Value = value.HasValue ? new DoubleValue(value.Value) : null;
|
---|
93 | }
|
---|
94 | }
|
---|
95 |
|
---|
96 | protected FixedValueParameter<IntValue> MaximumPopulationSizeParameter {
|
---|
97 | get { return ((FixedValueParameter<IntValue>)Parameters["MaximumPopulationSize"]); }
|
---|
98 | }
|
---|
99 | public int MaximumPopulationSize {
|
---|
100 | get { return MaximumPopulationSizeParameter.Value.Value; }
|
---|
101 | set { MaximumPopulationSizeParameter.Value.Value = value; }
|
---|
102 | }
|
---|
103 |
|
---|
104 | public bool SetSeedRandomly {
|
---|
105 | get { return ((FixedValueParameter<BoolValue>)Parameters["SetSeedRandomly"]).Value.Value; }
|
---|
106 | set { ((FixedValueParameter<BoolValue>)Parameters["SetSeedRandomly"]).Value.Value = value; }
|
---|
107 | }
|
---|
108 |
|
---|
109 | public int Seed {
|
---|
110 | get { return ((FixedValueParameter<IntValue>)Parameters["Seed"]).Value.Value; }
|
---|
111 | set { ((FixedValueParameter<IntValue>)Parameters["Seed"]).Value.Value = value; }
|
---|
112 | }
|
---|
113 |
|
---|
114 | public IAnalyzer Analyzer {
|
---|
115 | get { return ((ValueParameter<IAnalyzer>)Parameters["Analyzer"]).Value; }
|
---|
116 | set { ((ValueParameter<IAnalyzer>)Parameters["Analyzer"]).Value = value; }
|
---|
117 | }
|
---|
118 |
|
---|
119 | public IConstrainedValueParameter<ISolutionModelTrainer<TPopulationContext>> SolutionModelTrainerParameter {
|
---|
120 | get { return (IConstrainedValueParameter<ISolutionModelTrainer<TPopulationContext>>)Parameters["SolutionModelTrainer"]; }
|
---|
121 | }
|
---|
122 |
|
---|
123 | public IConstrainedValueParameter<ILocalSearch<TSolutionContext>> LocalSearchParameter {
|
---|
124 | get { return (IConstrainedValueParameter<ILocalSearch<TSolutionContext>>)Parameters["LocalSearch"]; }
|
---|
125 | }
|
---|
126 |
|
---|
127 | [Storable]
|
---|
128 | private TPopulationContext context;
|
---|
129 | public TPopulationContext Context {
|
---|
130 | get { return context; }
|
---|
131 | protected set {
|
---|
132 | if (context == value) return;
|
---|
133 | context = value;
|
---|
134 | OnPropertyChanged("State");
|
---|
135 | }
|
---|
136 | }
|
---|
137 |
|
---|
138 | [Storable]
|
---|
139 | private BestAverageWorstQualityAnalyzer qualityAnalyzer;
|
---|
140 | [Storable]
|
---|
141 | private QualityPerClockAnalyzer qualityPerClockAnalyzer;
|
---|
142 | [Storable]
|
---|
143 | private QualityPerEvaluationsAnalyzer qualityPerEvaluationsAnalyzer;
|
---|
144 |
|
---|
145 | [StorableConstructor]
|
---|
146 | protected MemPRAlgorithm(bool deserializing) : base(deserializing) { }
|
---|
147 | protected MemPRAlgorithm(MemPRAlgorithm<TProblem, TSolution, TPopulationContext, TSolutionContext> original, Cloner cloner) : base(original, cloner) {
|
---|
148 | context = cloner.Clone(original.context);
|
---|
149 | qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
|
---|
150 | qualityPerClockAnalyzer = cloner.Clone(original.qualityPerClockAnalyzer);
|
---|
151 | qualityPerEvaluationsAnalyzer = cloner.Clone(original.qualityPerEvaluationsAnalyzer);
|
---|
152 |
|
---|
153 | RegisterEventHandlers();
|
---|
154 | }
|
---|
155 | protected MemPRAlgorithm() {
|
---|
156 | Parameters.Add(new ValueParameter<IAnalyzer>("Analyzer", "The analyzer to apply to the population.", new MultiAnalyzer()));
|
---|
157 | Parameters.Add(new FixedValueParameter<IntValue>("MaximumPopulationSize", "The maximum size of the population that is evolved.", new IntValue(20)));
|
---|
158 | Parameters.Add(new OptionalValueParameter<IntValue>("MaximumEvaluations", "The maximum number of solution evaluations."));
|
---|
159 | Parameters.Add(new OptionalValueParameter<TimeSpanValue>("MaximumExecutionTime", "The maximum runtime.", new TimeSpanValue(TimeSpan.FromMinutes(10))));
|
---|
160 | Parameters.Add(new OptionalValueParameter<DoubleValue>("TargetQuality", "The target quality at which the algorithm terminates."));
|
---|
161 | Parameters.Add(new FixedValueParameter<BoolValue>("SetSeedRandomly", "Whether each run of the algorithm should be conducted with a new random seed.", new BoolValue(true)));
|
---|
162 | Parameters.Add(new FixedValueParameter<IntValue>("Seed", "The random number seed that is used in case SetSeedRandomly is false.", new IntValue(0)));
|
---|
163 | Parameters.Add(new ConstrainedValueParameter<ISolutionModelTrainer<TPopulationContext>>("SolutionModelTrainer", "The object that creates a solution model that can be sampled."));
|
---|
164 | Parameters.Add(new ConstrainedValueParameter<ILocalSearch<TSolutionContext>>("LocalSearch", "The local search operator to use."));
|
---|
165 |
|
---|
166 | qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
|
---|
167 | qualityPerClockAnalyzer = new QualityPerClockAnalyzer();
|
---|
168 | qualityPerEvaluationsAnalyzer = new QualityPerEvaluationsAnalyzer();
|
---|
169 |
|
---|
170 | RegisterEventHandlers();
|
---|
171 | }
|
---|
172 |
|
---|
173 | [StorableHook(HookType.AfterDeserialization)]
|
---|
174 | private void AfterDeserialization() {
|
---|
175 | RegisterEventHandlers();
|
---|
176 | }
|
---|
177 |
|
---|
178 | private void RegisterEventHandlers() {
|
---|
179 | MaximumPopulationSizeParameter.Value.ValueChanged += MaximumPopulationSizeOnChanged;
|
---|
180 | }
|
---|
181 |
|
---|
182 | private void MaximumPopulationSizeOnChanged(object sender, EventArgs eventArgs) {
|
---|
183 | if (ExecutionState == ExecutionState.Started || ExecutionState == ExecutionState.Paused)
|
---|
184 | throw new InvalidOperationException("Cannot change maximum population size before algorithm finishes.");
|
---|
185 | Prepare();
|
---|
186 | }
|
---|
187 |
|
---|
188 | protected override void OnProblemChanged() {
|
---|
189 | base.OnProblemChanged();
|
---|
190 | qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
|
---|
191 | qualityAnalyzer.MaximizationParameter.Hidden = true;
|
---|
192 | qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
|
---|
193 | qualityAnalyzer.QualityParameter.Depth = 1;
|
---|
194 | qualityAnalyzer.QualityParameter.Hidden = true;
|
---|
195 | qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name;
|
---|
196 | qualityAnalyzer.BestKnownQualityParameter.Hidden = true;
|
---|
197 |
|
---|
198 | var multiAnalyzer = Analyzer as MultiAnalyzer;
|
---|
199 | if (multiAnalyzer != null) {
|
---|
200 | multiAnalyzer.Operators.Clear();
|
---|
201 | if (Problem != null) {
|
---|
202 | foreach (var analyzer in Problem.Operators.OfType<IAnalyzer>()) {
|
---|
203 | foreach (var param in analyzer.Parameters.OfType<IScopeTreeLookupParameter>())
|
---|
204 | param.Depth = 1;
|
---|
205 | multiAnalyzer.Operators.Add(analyzer, analyzer.EnabledByDefault || analyzer is ISimilarityBasedOperator);
|
---|
206 | }
|
---|
207 | }
|
---|
208 | multiAnalyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault);
|
---|
209 | multiAnalyzer.Operators.Add(qualityPerClockAnalyzer, true);
|
---|
210 | multiAnalyzer.Operators.Add(qualityPerEvaluationsAnalyzer, true);
|
---|
211 | }
|
---|
212 | }
|
---|
213 |
|
---|
214 | public override void Prepare() {
|
---|
215 | base.Prepare();
|
---|
216 | Results.Clear();
|
---|
217 | Context = null;
|
---|
218 | }
|
---|
219 |
|
---|
220 | protected virtual TPopulationContext CreateContext() {
|
---|
221 | return new TPopulationContext();
|
---|
222 | }
|
---|
223 |
|
---|
224 | public void StartSync() {
|
---|
225 | using (var w = new AutoResetEvent(false)) {
|
---|
226 | EventHandler handler = (sender, e) => {
|
---|
227 | if (ExecutionState == ExecutionState.Paused
|
---|
228 | || ExecutionState == ExecutionState.Stopped)
|
---|
229 | w.Set();
|
---|
230 | };
|
---|
231 | ExecutionStateChanged += handler;
|
---|
232 | try {
|
---|
233 | Start();
|
---|
234 | w.WaitOne();
|
---|
235 | } finally { ExecutionStateChanged -= handler; }
|
---|
236 | }
|
---|
237 | }
|
---|
238 |
|
---|
239 | protected sealed override void Run(CancellationToken token) {
|
---|
240 | if (Context == null) {
|
---|
241 | Context = CreateContext();
|
---|
242 | if (SetSeedRandomly) Seed = new System.Random().Next();
|
---|
243 | Context.Random.Reset(Seed);
|
---|
244 | Context.Scope.Variables.Add(new Variable("Results", Results));
|
---|
245 | Context.Problem = Problem;
|
---|
246 | }
|
---|
247 |
|
---|
248 | if (MaximumExecutionTime.HasValue)
|
---|
249 | CancellationTokenSource.CancelAfter(MaximumExecutionTime.Value);
|
---|
250 |
|
---|
251 | IExecutionContext context = null;
|
---|
252 | foreach (var item in Problem.ExecutionContextItems)
|
---|
253 | context = new Core.ExecutionContext(context, item, Context.Scope);
|
---|
254 | context = new Core.ExecutionContext(context, this, Context.Scope);
|
---|
255 | Context.Parent = context;
|
---|
256 |
|
---|
257 | if (!Context.Initialized) {
|
---|
258 | // We initialize the population with two local optima
|
---|
259 | while (Context.PopulationCount < 2) {
|
---|
260 | var child = Create(token);
|
---|
261 | Context.LocalSearchEvaluations += HillClimb(child, token);
|
---|
262 | Context.LocalOptimaLevel += child.Fitness;
|
---|
263 | Context.AddToPopulation(child);
|
---|
264 | Context.BestQuality = child.Fitness;
|
---|
265 | Analyze(CancellationToken.None);
|
---|
266 | token.ThrowIfCancellationRequested();
|
---|
267 | if (Terminate()) return;
|
---|
268 | }
|
---|
269 | Context.LocalSearchEvaluations /= 2;
|
---|
270 | Context.LocalOptimaLevel /= 2;
|
---|
271 | Context.Initialized = true;
|
---|
272 | }
|
---|
273 |
|
---|
274 | while (!Terminate()) {
|
---|
275 | Iterate(token);
|
---|
276 | Analyze(token);
|
---|
277 | token.ThrowIfCancellationRequested();
|
---|
278 | }
|
---|
279 | }
|
---|
280 |
|
---|
281 | private void Iterate(CancellationToken token) {
|
---|
282 | var replaced = false;
|
---|
283 | ISingleObjectiveSolutionScope<TSolution> offspring = null;
|
---|
284 |
|
---|
285 | offspring = Breed(token);
|
---|
286 | if (offspring != null) {
|
---|
287 | var replNew = Replace(offspring, token);
|
---|
288 | if (replNew) {
|
---|
289 | replaced = true;
|
---|
290 | Context.ByBreeding++;
|
---|
291 | }
|
---|
292 | }
|
---|
293 |
|
---|
294 | offspring = Relink(token);
|
---|
295 | if (offspring != null) {
|
---|
296 | if (Replace(offspring, token)) {
|
---|
297 | replaced = true;
|
---|
298 | Context.ByRelinking++;
|
---|
299 | }
|
---|
300 | }
|
---|
301 |
|
---|
302 | offspring = Delink(token);
|
---|
303 | if (offspring != null) {
|
---|
304 | if (Replace(offspring, token)) {
|
---|
305 | replaced = true;
|
---|
306 | Context.ByDelinking++;
|
---|
307 | }
|
---|
308 | }
|
---|
309 |
|
---|
310 | offspring = Sample(token);
|
---|
311 | if (offspring != null) {
|
---|
312 | if (Replace(offspring, token)) {
|
---|
313 | replaced = true;
|
---|
314 | Context.BySampling++;
|
---|
315 | }
|
---|
316 | }
|
---|
317 |
|
---|
318 | if (!replaced && offspring != null) {
|
---|
319 | if (Context.HillclimbingSuited(offspring.Fitness)) {
|
---|
320 | HillClimb(offspring, token, CalculateSubspace(Context.Population.Select(x => x.Solution)));
|
---|
321 | if (Replace(offspring, token)) {
|
---|
322 | Context.ByHillclimbing++;
|
---|
323 | replaced = true;
|
---|
324 | }
|
---|
325 | }
|
---|
326 | }
|
---|
327 |
|
---|
328 | if (!replaced) {
|
---|
329 | var before = Context.Population.SampleRandom(Context.Random);
|
---|
330 | offspring = (ISingleObjectiveSolutionScope<TSolution>)before.Clone();
|
---|
331 | AdaptiveWalk(offspring, Context.LocalSearchEvaluations * 2, token);
|
---|
332 | if (!Eq(before, offspring))
|
---|
333 | Context.AddAdaptivewalkingResult(before, offspring);
|
---|
334 | if (Replace(offspring, token)) {
|
---|
335 | Context.ByAdaptivewalking++;
|
---|
336 | replaced = true;
|
---|
337 | }
|
---|
338 | }
|
---|
339 |
|
---|
340 | Context.Iterations++;
|
---|
341 | }
|
---|
342 |
|
---|
343 | protected void Analyze(CancellationToken token) {
|
---|
344 | IResult res;
|
---|
345 | if (!Results.TryGetValue("EvaluatedSolutions", out res))
|
---|
346 | Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
347 | else ((IntValue)res.Value).Value = Context.EvaluatedSolutions;
|
---|
348 | if (!Results.TryGetValue("Iterations", out res))
|
---|
349 | Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
350 | else ((IntValue)res.Value).Value = Context.Iterations;
|
---|
351 | if (!Results.TryGetValue("LocalSearch Evaluations", out res))
|
---|
352 | Results.Add(new Result("LocalSearch Evaluations", new IntValue(Context.LocalSearchEvaluations)));
|
---|
353 | else ((IntValue)res.Value).Value = Context.LocalSearchEvaluations;
|
---|
354 | if (!Results.TryGetValue("ByBreeding", out res))
|
---|
355 | Results.Add(new Result("ByBreeding", new IntValue(Context.ByBreeding)));
|
---|
356 | else ((IntValue)res.Value).Value = Context.ByBreeding;
|
---|
357 | if (!Results.TryGetValue("ByRelinking", out res))
|
---|
358 | Results.Add(new Result("ByRelinking", new IntValue(Context.ByRelinking)));
|
---|
359 | else ((IntValue)res.Value).Value = Context.ByRelinking;
|
---|
360 | if (!Results.TryGetValue("ByDelinking", out res))
|
---|
361 | Results.Add(new Result("ByDelinking", new IntValue(Context.ByDelinking)));
|
---|
362 | else ((IntValue)res.Value).Value = Context.ByDelinking;
|
---|
363 | if (!Results.TryGetValue("BySampling", out res))
|
---|
364 | Results.Add(new Result("BySampling", new IntValue(Context.BySampling)));
|
---|
365 | else ((IntValue)res.Value).Value = Context.BySampling;
|
---|
366 | if (!Results.TryGetValue("ByHillclimbing", out res))
|
---|
367 | Results.Add(new Result("ByHillclimbing", new IntValue(Context.ByHillclimbing)));
|
---|
368 | else ((IntValue)res.Value).Value = Context.ByHillclimbing;
|
---|
369 | if (!Results.TryGetValue("ByAdaptivewalking", out res))
|
---|
370 | Results.Add(new Result("ByAdaptivewalking", new IntValue(Context.ByAdaptivewalking)));
|
---|
371 | else ((IntValue)res.Value).Value = Context.ByAdaptivewalking;
|
---|
372 |
|
---|
373 | var sp = new ScatterPlot("Breeding Correlation", "");
|
---|
374 | sp.Rows.Add(new ScatterPlotDataRow("Parent1 vs Offspring", "", Context.BreedingStat.Select(x => new Point2D<double>(x.Item1, x.Item4))) { VisualProperties = { PointSize = 6 }});
|
---|
375 | sp.Rows.Add(new ScatterPlotDataRow("Parent2 vs Offspring", "", Context.BreedingStat.Select(x => new Point2D<double>(x.Item2, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
376 | sp.Rows.Add(new ScatterPlotDataRow("Parent Distance vs Offspring", "", Context.BreedingStat.Select(x => new Point2D<double>(x.Item3, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
377 | if (!Results.TryGetValue("BreedingStat", out res)) {
|
---|
378 | Results.Add(new Result("BreedingStat", sp));
|
---|
379 | } else res.Value = sp;
|
---|
380 |
|
---|
381 | sp = new ScatterPlot("Relinking Correlation", "");
|
---|
382 | sp.Rows.Add(new ScatterPlotDataRow("A vs Relink", "", Context.RelinkingStat.Select(x => new Point2D<double>(x.Item1, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
383 | sp.Rows.Add(new ScatterPlotDataRow("B vs Relink", "", Context.RelinkingStat.Select(x => new Point2D<double>(x.Item2, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
384 | sp.Rows.Add(new ScatterPlotDataRow("d(A,B) vs Offspring", "", Context.RelinkingStat.Select(x => new Point2D<double>(x.Item3, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
385 | if (!Results.TryGetValue("RelinkingStat", out res)) {
|
---|
386 | Results.Add(new Result("RelinkingStat", sp));
|
---|
387 | } else res.Value = sp;
|
---|
388 |
|
---|
389 | sp = new ScatterPlot("Delinking Correlation", "");
|
---|
390 | sp.Rows.Add(new ScatterPlotDataRow("A vs Delink", "", Context.DelinkingStat.Select(x => new Point2D<double>(x.Item1, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
391 | sp.Rows.Add(new ScatterPlotDataRow("B vs Delink", "", Context.DelinkingStat.Select(x => new Point2D<double>(x.Item2, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
392 | sp.Rows.Add(new ScatterPlotDataRow("d(A,B) vs Offspring", "", Context.DelinkingStat.Select(x => new Point2D<double>(x.Item3, x.Item4))) { VisualProperties = { PointSize = 6 } });
|
---|
393 | if (!Results.TryGetValue("DelinkingStat", out res)) {
|
---|
394 | Results.Add(new Result("DelinkingStat", sp));
|
---|
395 | } else res.Value = sp;
|
---|
396 |
|
---|
397 | sp = new ScatterPlot("Sampling Correlation", "");
|
---|
398 | sp.Rows.Add(new ScatterPlotDataRow("AvgFitness vs Sample", "", Context.SamplingStat.Select(x => new Point2D<double>(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } });
|
---|
399 | if (!Results.TryGetValue("SampleStat", out res)) {
|
---|
400 | Results.Add(new Result("SampleStat", sp));
|
---|
401 | } else res.Value = sp;
|
---|
402 |
|
---|
403 | sp = new ScatterPlot("Hillclimbing Correlation", "");
|
---|
404 | sp.Rows.Add(new ScatterPlotDataRow("Start vs Improvement", "", Context.HillclimbingStat.Select(x => new Point2D<double>(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } });
|
---|
405 | if (!Results.TryGetValue("HillclimbingStat", out res)) {
|
---|
406 | Results.Add(new Result("HillclimbingStat", sp));
|
---|
407 | } else res.Value = sp;
|
---|
408 |
|
---|
409 | sp = new ScatterPlot("Adaptivewalking Correlation", "");
|
---|
410 | sp.Rows.Add(new ScatterPlotDataRow("Start vs Best", "", Context.AdaptivewalkingStat.Select(x => new Point2D<double>(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } });
|
---|
411 | if (!Results.TryGetValue("AdaptivewalkingStat", out res)) {
|
---|
412 | Results.Add(new Result("AdaptivewalkingStat", sp));
|
---|
413 | } else res.Value = sp;
|
---|
414 |
|
---|
415 | Context.RunOperator(Analyzer, Context.Scope, token);
|
---|
416 | }
|
---|
417 |
|
---|
418 | protected bool Replace(ISingleObjectiveSolutionScope<TSolution> child, CancellationToken token) {
|
---|
419 | if (double.IsNaN(child.Fitness)) {
|
---|
420 | Context.Evaluate(child, token);
|
---|
421 | Context.IncrementEvaluatedSolutions(1);
|
---|
422 | }
|
---|
423 | if (Context.IsBetter(child.Fitness, Context.BestQuality)) {
|
---|
424 | Context.BestQuality = child.Fitness;
|
---|
425 | Context.BestSolution = (TSolution)child.Solution.Clone();
|
---|
426 | }
|
---|
427 |
|
---|
428 | var popSize = MaximumPopulationSize;
|
---|
429 | if (Context.Population.All(p => !Eq(p, child))) {
|
---|
430 |
|
---|
431 | if (Context.PopulationCount < popSize) {
|
---|
432 | Context.AddToPopulation(child);
|
---|
433 | return true;// Context.PopulationCount - 1;
|
---|
434 | }
|
---|
435 |
|
---|
436 | // The set of replacement candidates consists of all solutions at least as good as the new one
|
---|
437 | var candidates = Context.Population.Select((p, i) => new { Index = i, Individual = p })
|
---|
438 | .Where(x => x.Individual.Fitness == child.Fitness
|
---|
439 | || Context.IsBetter(child, x.Individual)).ToList();
|
---|
440 | if (candidates.Count == 0) return false;// -1;
|
---|
441 |
|
---|
442 | var repCand = -1;
|
---|
443 | var avgChildDist = 0.0;
|
---|
444 | var minChildDist = double.MaxValue;
|
---|
445 | var plateau = new List<int>();
|
---|
446 | var worstPlateau = -1;
|
---|
447 | var minAvgPlateauDist = double.MaxValue;
|
---|
448 | var minPlateauDist = double.MaxValue;
|
---|
449 | // If there are equally good solutions it is first tried to replace one of those
|
---|
450 | // The criteria for replacement is that the new solution has better average distance
|
---|
451 | // to all other solutions at this "plateau"
|
---|
452 | foreach (var c in candidates.Where(x => x.Individual.Fitness == child.Fitness)) {
|
---|
453 | var dist = Dist(c.Individual, child);
|
---|
454 | avgChildDist += dist;
|
---|
455 | if (dist < minChildDist) minChildDist = dist;
|
---|
456 | plateau.Add(c.Index);
|
---|
457 | }
|
---|
458 | if (plateau.Count > 2) {
|
---|
459 | avgChildDist /= plateau.Count;
|
---|
460 | foreach (var p in plateau) {
|
---|
461 | var avgDist = 0.0;
|
---|
462 | var minDist = double.MaxValue;
|
---|
463 | foreach (var q in plateau) {
|
---|
464 | if (p == q) continue;
|
---|
465 | var dist = Dist(Context.AtPopulation(p), Context.AtPopulation(q));
|
---|
466 | avgDist += dist;
|
---|
467 | if (dist < minDist) minDist = dist;
|
---|
468 | }
|
---|
469 |
|
---|
470 | var d = Dist(Context.AtPopulation(p), child);
|
---|
471 | avgDist += d;
|
---|
472 | avgDist /= plateau.Count;
|
---|
473 | if (d < minDist) minDist = d;
|
---|
474 |
|
---|
475 | if (minDist < minPlateauDist || (minDist == minPlateauDist && avgDist < avgChildDist)) {
|
---|
476 | minAvgPlateauDist = avgDist;
|
---|
477 | minPlateauDist = minDist;
|
---|
478 | worstPlateau = p;
|
---|
479 | }
|
---|
480 | }
|
---|
481 | if (minPlateauDist < minChildDist || (minPlateauDist == minChildDist && minAvgPlateauDist < avgChildDist))
|
---|
482 | repCand = worstPlateau;
|
---|
483 | }
|
---|
484 |
|
---|
485 | if (repCand < 0) {
|
---|
486 | // If no solution at the same plateau were identified for replacement
|
---|
487 | // a worse solution with smallest distance is chosen
|
---|
488 | var minDist = double.MaxValue;
|
---|
489 | foreach (var c in candidates.Where(x => Context.IsBetter(child, x.Individual))) {
|
---|
490 | var d = Dist(c.Individual, child);
|
---|
491 | if (d < minDist) {
|
---|
492 | minDist = d;
|
---|
493 | repCand = c.Index;
|
---|
494 | }
|
---|
495 | }
|
---|
496 | }
|
---|
497 |
|
---|
498 | // If no replacement was identified, this can only mean that there are
|
---|
499 | // no worse solutions and those on the same plateau are all better
|
---|
500 | // stretched out than the new one
|
---|
501 | if (repCand < 0) return false;// -1;
|
---|
502 |
|
---|
503 | Context.ReplaceAtPopulation(repCand, child);
|
---|
504 | return true;// repCand;
|
---|
505 | }
|
---|
506 | return false;// -1;
|
---|
507 | }
|
---|
508 |
|
---|
509 | protected bool Eq(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b) {
|
---|
510 | return Eq(a.Solution, b.Solution);
|
---|
511 | }
|
---|
512 | protected abstract bool Eq(TSolution a, TSolution b);
|
---|
513 | protected abstract double Dist(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b);
|
---|
514 | protected abstract ISolutionSubspace<TSolution> CalculateSubspace(IEnumerable<TSolution> solutions, bool inverse = false);
|
---|
515 |
|
---|
516 | #region Create
|
---|
517 | protected virtual ISingleObjectiveSolutionScope<TSolution> Create(CancellationToken token) {
|
---|
518 | var child = Context.ToScope(null);
|
---|
519 | Context.RunOperator(Problem.SolutionCreator, child, token);
|
---|
520 | return child;
|
---|
521 | }
|
---|
522 | #endregion
|
---|
523 |
|
---|
524 | #region Improve
|
---|
525 | protected virtual int HillClimb(ISingleObjectiveSolutionScope<TSolution> scope, CancellationToken token, ISolutionSubspace<TSolution> subspace = null) {
|
---|
526 | if (double.IsNaN(scope.Fitness)) {
|
---|
527 | Context.Evaluate(scope, token);
|
---|
528 | Context.IncrementEvaluatedSolutions(1);
|
---|
529 | }
|
---|
530 | var before = (ISingleObjectiveSolutionScope<TSolution>)scope.Clone();
|
---|
531 | var lscontext = Context.CreateSingleSolutionContext(scope);
|
---|
532 | LocalSearchParameter.Value.Optimize(lscontext);
|
---|
533 | Context.AddHillclimbingResult(before, scope);
|
---|
534 | Context.IncrementEvaluatedSolutions(lscontext.EvaluatedSolutions);
|
---|
535 | return lscontext.EvaluatedSolutions;
|
---|
536 | }
|
---|
537 |
|
---|
538 | protected virtual void AdaptiveClimb(ISingleObjectiveSolutionScope<TSolution> scope, int maxEvals, CancellationToken token, ISolutionSubspace<TSolution> subspace = null) {
|
---|
539 | if (double.IsNaN(scope.Fitness)) {
|
---|
540 | Context.Evaluate(scope, token);
|
---|
541 | Context.IncrementEvaluatedSolutions(1);
|
---|
542 | }
|
---|
543 | var newScope = (ISingleObjectiveSolutionScope<TSolution>)scope.Clone();
|
---|
544 | AdaptiveWalk(newScope, maxEvals, token, subspace);
|
---|
545 |
|
---|
546 | Context.AddAdaptivewalkingResult(scope, newScope);
|
---|
547 | if (Context.IsBetter(newScope, scope)) {
|
---|
548 | scope.Adopt(newScope);
|
---|
549 | }
|
---|
550 | }
|
---|
551 | protected abstract void AdaptiveWalk(ISingleObjectiveSolutionScope<TSolution> scope, int maxEvals, CancellationToken token, ISolutionSubspace<TSolution> subspace = null);
|
---|
552 |
|
---|
553 | #endregion
|
---|
554 |
|
---|
555 | #region Breed
|
---|
556 | protected virtual ISingleObjectiveSolutionScope<TSolution> Breed(CancellationToken token) {
|
---|
557 | var i1 = Context.Random.Next(Context.PopulationCount);
|
---|
558 | var i2 = Context.Random.Next(Context.PopulationCount);
|
---|
559 | while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount);
|
---|
560 |
|
---|
561 | var p1 = Context.AtPopulation(i1);
|
---|
562 | var p2 = Context.AtPopulation(i2);
|
---|
563 |
|
---|
564 | if (double.IsNaN(p1.Fitness)) {
|
---|
565 | Context.Evaluate(p1, token);
|
---|
566 | Context.IncrementEvaluatedSolutions(1);
|
---|
567 | }
|
---|
568 | if (double.IsNaN(p2.Fitness)) {
|
---|
569 | Context.Evaluate(p2, token);
|
---|
570 | Context.IncrementEvaluatedSolutions(1);
|
---|
571 | }
|
---|
572 |
|
---|
573 | if (!Context.BreedingSuited(p1, p2, Dist(p1, p2))) return null;
|
---|
574 |
|
---|
575 | var offspring = Breed(p1, p2, token);
|
---|
576 |
|
---|
577 | if (double.IsNaN(offspring.Fitness)) {
|
---|
578 | Context.Evaluate(offspring, token);
|
---|
579 | Context.IncrementEvaluatedSolutions(1);
|
---|
580 | }
|
---|
581 |
|
---|
582 | Context.AddBreedingResult(p1, p2, Dist(p1, p2), offspring);
|
---|
583 |
|
---|
584 | // new best solutions are improved using hill climbing in full solution space
|
---|
585 | if (Context.Population.All(p => Context.IsBetter(offspring, p)))
|
---|
586 | HillClimb(offspring, token);
|
---|
587 | else if (!Eq(offspring, p1) && !Eq(offspring, p2) && Context.HillclimbingSuited(offspring.Fitness))
|
---|
588 | HillClimb(offspring, token, CalculateSubspace(new[] { p1.Solution, p2.Solution }, inverse: false));
|
---|
589 |
|
---|
590 | return offspring;
|
---|
591 | }
|
---|
592 |
|
---|
593 | protected abstract ISingleObjectiveSolutionScope<TSolution> Breed(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, CancellationToken token);
|
---|
594 | #endregion
|
---|
595 |
|
---|
596 | #region Relink/Delink
|
---|
597 | protected virtual ISingleObjectiveSolutionScope<TSolution> Relink(CancellationToken token) {
|
---|
598 | var i1 = Context.Random.Next(Context.PopulationCount);
|
---|
599 | var i2 = Context.Random.Next(Context.PopulationCount);
|
---|
600 | while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount);
|
---|
601 |
|
---|
602 | var p1 = Context.AtPopulation(i1);
|
---|
603 | var p2 = Context.AtPopulation(i2);
|
---|
604 |
|
---|
605 | if (!Context.RelinkSuited(p1, p2, Dist(p1, p2))) return null;
|
---|
606 |
|
---|
607 | var link = PerformRelinking(p1, p2, token, delink: false);
|
---|
608 |
|
---|
609 | // new best solutions are improved using hill climbing in full solution space
|
---|
610 | if (Context.Population.All(p => Context.IsBetter(link, p)))
|
---|
611 | HillClimb(link, token);
|
---|
612 | else if (!Eq(link, p1) && !Eq(link, p2) && Context.HillclimbingSuited(link.Fitness))
|
---|
613 | HillClimb(link, token, CalculateSubspace(new[] { p1.Solution, p2.Solution }, inverse: true));
|
---|
614 |
|
---|
615 | return link;
|
---|
616 | }
|
---|
617 |
|
---|
618 | protected virtual ISingleObjectiveSolutionScope<TSolution> Delink(CancellationToken token) {
|
---|
619 | var i1 = Context.Random.Next(Context.PopulationCount);
|
---|
620 | var i2 = Context.Random.Next(Context.PopulationCount);
|
---|
621 | while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount);
|
---|
622 |
|
---|
623 | var p1 = Context.AtPopulation(i1);
|
---|
624 | var p2 = Context.AtPopulation(i2);
|
---|
625 |
|
---|
626 | if (!Context.DelinkSuited(p1, p2, Dist(p1, p2))) return null;
|
---|
627 |
|
---|
628 | var link = PerformRelinking(p1, p2, token, delink: true);
|
---|
629 |
|
---|
630 | // new best solutions are improved using hill climbing in full solution space
|
---|
631 | if (Context.Population.All(p => Context.IsBetter(link, p)))
|
---|
632 | HillClimb(link, token);
|
---|
633 | // intentionally not making hill climbing otherwise after delinking in sub-space
|
---|
634 | return link;
|
---|
635 | }
|
---|
636 |
|
---|
637 | protected virtual ISingleObjectiveSolutionScope<TSolution> PerformRelinking(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, CancellationToken token, bool delink = false) {
|
---|
638 | var relink = Link(a, b, token, delink);
|
---|
639 |
|
---|
640 | if (double.IsNaN(relink.Fitness)) {
|
---|
641 | Context.Evaluate(relink, token);
|
---|
642 | Context.IncrementEvaluatedSolutions(1);
|
---|
643 | }
|
---|
644 |
|
---|
645 | if (delink) {
|
---|
646 | Context.AddDelinkingResult(a, b, Dist(a, b), relink);
|
---|
647 | } else {
|
---|
648 | Context.AddRelinkingResult(a, b, Dist(a, b), relink);
|
---|
649 | }
|
---|
650 |
|
---|
651 | return relink;
|
---|
652 | }
|
---|
653 |
|
---|
654 | protected abstract ISingleObjectiveSolutionScope<TSolution> Link(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, CancellationToken token, bool delink = false);
|
---|
655 | #endregion
|
---|
656 |
|
---|
657 | #region Sample
|
---|
658 | protected virtual ISingleObjectiveSolutionScope<TSolution> Sample(CancellationToken token) {
|
---|
659 | if (Context.PopulationCount == MaximumPopulationSize) {
|
---|
660 | SolutionModelTrainerParameter.Value.TrainModel(Context);
|
---|
661 | ISingleObjectiveSolutionScope<TSolution> bestSample = null;
|
---|
662 | var tries = 1;
|
---|
663 | var avgDist = (from a in Context.Population.Shuffle(Context.Random)
|
---|
664 | from b in Context.Population.Shuffle(Context.Random)
|
---|
665 | select Dist(a, b)).Average();
|
---|
666 | for (; tries < 100; tries++) {
|
---|
667 | var sample = Context.ToScope(Context.Model.Sample());
|
---|
668 | Context.Evaluate(sample, token);
|
---|
669 | if (bestSample == null || Context.IsBetter(sample, bestSample)) {
|
---|
670 | bestSample = sample;
|
---|
671 | if (Context.Population.Any(x => !Context.IsBetter(x, bestSample))) break;
|
---|
672 | }
|
---|
673 | if (!Context.SamplingSuited(avgDist)) break;
|
---|
674 | }
|
---|
675 | Context.IncrementEvaluatedSolutions(tries);
|
---|
676 | Context.AddSamplingResult(bestSample, avgDist);
|
---|
677 | return bestSample;
|
---|
678 | }
|
---|
679 | return null;
|
---|
680 | }
|
---|
681 | #endregion
|
---|
682 |
|
---|
683 | protected virtual bool Terminate() {
|
---|
684 | var maximization = ((IValueParameter<BoolValue>)Problem.MaximizationParameter).Value.Value;
|
---|
685 | return MaximumEvaluations.HasValue && Context.EvaluatedSolutions >= MaximumEvaluations.Value
|
---|
686 | || MaximumExecutionTime.HasValue && ExecutionTime >= MaximumExecutionTime.Value
|
---|
687 | || TargetQuality.HasValue && (maximization && Context.BestQuality >= TargetQuality.Value
|
---|
688 | || !maximization && Context.BestQuality <= TargetQuality.Value);
|
---|
689 | }
|
---|
690 |
|
---|
691 | public event PropertyChangedEventHandler PropertyChanged;
|
---|
692 | protected void OnPropertyChanged(string property) {
|
---|
693 | var handler = PropertyChanged;
|
---|
694 | if (handler != null) handler(this, new PropertyChangedEventArgs(property));
|
---|
695 | }
|
---|
696 | }
|
---|
697 | }
|
---|