Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2457_ExpertSystem/HeuristicLab.Algorithms.MemPR/3.3/Binary/SolutionModel/Univariate/BiasedModelTrainer.cs @ 17146

Last change on this file since 17146 was 14776, checked in by abeham, 8 years ago

#2457: working on MemPR integration

File size: 3.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Algorithms.MemPR.Interfaces;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.BinaryVectorEncoding;
28using HeuristicLab.Encodings.BinaryVectorEncoding.SolutionModel;
29using HeuristicLab.Optimization;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32
33namespace HeuristicLab.Algorithms.MemPR.Binary.SolutionModel.Univariate {
34  public enum ModelBiasOptions { Rank, Fitness }
35
36  [Item("Biased Univariate Model Trainer (binary)", "", ExcludeGenericTypeInfo = true)]
37  [StorableClass]
38  public class BiasedModelTrainer<TContext> : ParameterizedNamedItem, ISolutionModelTrainer<TContext>
39    where TContext : IPopulationBasedHeuristicAlgorithmContext<ISingleObjectiveHeuristicOptimizationProblem, BinaryVector>, ISolutionModelContext<BinaryVector> {
40   
41    public bool Bias { get { return true; } }
42
43    [Storable]
44    private IValueParameter<EnumValue<ModelBiasOptions>> modelBiasParameter;
45    public ModelBiasOptions ModelBias {
46      get { return modelBiasParameter.Value.Value; }
47      set { modelBiasParameter.Value.Value = value; }
48    }
49
50    [StorableConstructor]
51    protected BiasedModelTrainer(bool deserializing) : base(deserializing) { }
52    protected BiasedModelTrainer(BiasedModelTrainer<TContext> original, Cloner cloner)
53      : base(original, cloner) {
54      modelBiasParameter = cloner.Clone(original.modelBiasParameter);
55    }
56    public BiasedModelTrainer() {
57      Parameters.Add(modelBiasParameter = new ValueParameter<EnumValue<ModelBiasOptions>>("Model Bias", "What kind of bias towards better individuals is chosen."));
58    }
59
60    public override IDeepCloneable Clone(Cloner cloner) {
61      return new BiasedModelTrainer<TContext>(this, cloner);
62    }
63
64    public void TrainModel(TContext context) {
65      var biasType = modelBiasParameter.Value.Value;
66      switch (biasType) {
67        case ModelBiasOptions.Fitness:
68          context.Model = UnivariateModelTrainer.TrainWithFitnessBias(context.Random, context.Maximization,
69            context.Population.Select(x => x.Solution),
70            context.Population.Select(x => x.Fitness));
71          break;
72        case ModelBiasOptions.Rank:
73          context.Model = UnivariateModelTrainer.TrainWithRankBias(context.Random, context.Maximization,
74            context.Population.Select(x => x.Solution),
75            context.Population.Select(x => x.Fitness));
76          break;
77      }
78    }
79  }
80}
Note: See TracBrowser for help on using the repository browser.