1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Algorithms.MemPR.Interfaces;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
28 | using HeuristicLab.Encodings.BinaryVectorEncoding.SolutionModel;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.MemPR.Binary.SolutionModel.Univariate {
|
---|
34 | public enum ModelBiasOptions { Rank, Fitness }
|
---|
35 |
|
---|
36 | [Item("Biased Univariate Model Trainer (binary)", "", ExcludeGenericTypeInfo = true)]
|
---|
37 | [StorableClass]
|
---|
38 | public class BiasedModelTrainer<TContext> : ParameterizedNamedItem, ISolutionModelTrainer<TContext>
|
---|
39 | where TContext : IPopulationBasedHeuristicAlgorithmContext<ISingleObjectiveHeuristicOptimizationProblem, BinaryVector>, ISolutionModelContext<BinaryVector> {
|
---|
40 |
|
---|
41 | public bool Bias { get { return true; } }
|
---|
42 |
|
---|
43 | [Storable]
|
---|
44 | private IValueParameter<EnumValue<ModelBiasOptions>> modelBiasParameter;
|
---|
45 | public ModelBiasOptions ModelBias {
|
---|
46 | get { return modelBiasParameter.Value.Value; }
|
---|
47 | set { modelBiasParameter.Value.Value = value; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | [StorableConstructor]
|
---|
51 | protected BiasedModelTrainer(bool deserializing) : base(deserializing) { }
|
---|
52 | protected BiasedModelTrainer(BiasedModelTrainer<TContext> original, Cloner cloner)
|
---|
53 | : base(original, cloner) {
|
---|
54 | modelBiasParameter = cloner.Clone(original.modelBiasParameter);
|
---|
55 | }
|
---|
56 | public BiasedModelTrainer() {
|
---|
57 | Parameters.Add(modelBiasParameter = new ValueParameter<EnumValue<ModelBiasOptions>>("Model Bias", "What kind of bias towards better individuals is chosen."));
|
---|
58 | }
|
---|
59 |
|
---|
60 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
61 | return new BiasedModelTrainer<TContext>(this, cloner);
|
---|
62 | }
|
---|
63 |
|
---|
64 | public void TrainModel(TContext context) {
|
---|
65 | var biasType = modelBiasParameter.Value.Value;
|
---|
66 | switch (biasType) {
|
---|
67 | case ModelBiasOptions.Fitness:
|
---|
68 | context.Model = UnivariateModelTrainer.TrainWithFitnessBias(context.Random, context.Maximization,
|
---|
69 | context.Population.Select(x => x.Solution),
|
---|
70 | context.Population.Select(x => x.Fitness));
|
---|
71 | break;
|
---|
72 | case ModelBiasOptions.Rank:
|
---|
73 | context.Model = UnivariateModelTrainer.TrainWithRankBias(context.Random, context.Maximization,
|
---|
74 | context.Population.Select(x => x.Solution),
|
---|
75 | context.Population.Select(x => x.Fitness));
|
---|
76 | break;
|
---|
77 | }
|
---|
78 | }
|
---|
79 | }
|
---|
80 | }
|
---|