1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 | #endregion
|
---|
22 |
|
---|
23 | using System;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Collections.ObjectModel;
|
---|
26 | using System.Globalization;
|
---|
27 | using System.Linq;
|
---|
28 | using HeuristicLab.Common;
|
---|
29 | using HeuristicLab.Core;
|
---|
30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
34 | using HEAL.Attic;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
37 | [StorableType("C383410E-8707-486F-98F6-1DFB708B09B5")]
|
---|
38 | [Item("RegressionTreeModel", "Represents a decision tree for regression.")]
|
---|
39 | public sealed class RegressionTreeModel : RegressionModel {
|
---|
40 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
41 | get { return tree.Select(t => t.VarName).Where(v => v != TreeNode.NO_VARIABLE); }
|
---|
42 | }
|
---|
43 |
|
---|
44 | // trees are represented as a flat array
|
---|
45 | internal struct TreeNode {
|
---|
46 | public readonly static string NO_VARIABLE = null;
|
---|
47 |
|
---|
48 | public TreeNode(string varName, double val, int leftIdx = -1, int rightIdx = -1, double weightLeft = -1.0)
|
---|
49 | : this() {
|
---|
50 | VarName = varName;
|
---|
51 | Val = val;
|
---|
52 | LeftIdx = leftIdx;
|
---|
53 | RightIdx = rightIdx;
|
---|
54 | WeightLeft = weightLeft;
|
---|
55 | }
|
---|
56 |
|
---|
57 | public string VarName { get; internal set; } // name of the variable for splitting or NO_VARIABLE if terminal node
|
---|
58 | public double Val { get; internal set; } // threshold
|
---|
59 | public int LeftIdx { get; internal set; }
|
---|
60 | public int RightIdx { get; internal set; }
|
---|
61 | public double WeightLeft { get; internal set; } // for partial dependence plots (value in range [0..1] describes the fraction of training samples for the left sub-tree
|
---|
62 |
|
---|
63 |
|
---|
64 | // necessary because the default implementation of GetHashCode for structs in .NET would only return the hashcode of val here
|
---|
65 | public override int GetHashCode() {
|
---|
66 | return LeftIdx ^ RightIdx ^ Val.GetHashCode();
|
---|
67 | }
|
---|
68 | // necessary because of GetHashCode override
|
---|
69 | public override bool Equals(object obj) {
|
---|
70 | if (obj is TreeNode) {
|
---|
71 | var other = (TreeNode)obj;
|
---|
72 | return Val.Equals(other.Val) &&
|
---|
73 | LeftIdx.Equals(other.LeftIdx) &&
|
---|
74 | RightIdx.Equals(other.RightIdx) &&
|
---|
75 | WeightLeft.Equals(other.WeightLeft) &&
|
---|
76 | EqualStrings(VarName, other.VarName);
|
---|
77 | } else {
|
---|
78 | return false;
|
---|
79 | }
|
---|
80 | }
|
---|
81 |
|
---|
82 | private bool EqualStrings(string a, string b) {
|
---|
83 | return (a == null && b == null) ||
|
---|
84 | (a != null && b != null && a.Equals(b));
|
---|
85 | }
|
---|
86 | }
|
---|
87 |
|
---|
88 | // not storable!
|
---|
89 | private TreeNode[] tree;
|
---|
90 |
|
---|
91 | #region old storable format
|
---|
92 | // remove with HL 3.4
|
---|
93 | [Storable(OldName = "SerializedTree")]
|
---|
94 | // to prevent storing the references to data caches in nodes
|
---|
95 | // seemingly, it is bad (performance-wise) to persist tuples (tuples are used as keys in a dictionary)
|
---|
96 | private Tuple<string, double, int, int>[] SerializedTree {
|
---|
97 | // get { return tree.Select(t => Tuple.Create(t.VarName, t.Val, t.LeftIdx, t.RightIdx)).ToArray(); }
|
---|
98 | set { this.tree = value.Select(t => new TreeNode(t.Item1, t.Item2, t.Item3, t.Item4, -1.0)).ToArray(); } // use a weight of -1.0 to indicate that partial dependence cannot be calculated for old models
|
---|
99 | }
|
---|
100 | #endregion
|
---|
101 | #region new storable format
|
---|
102 | [Storable]
|
---|
103 | private string[] SerializedTreeVarNames {
|
---|
104 | get { return tree.Select(t => t.VarName).ToArray(); }
|
---|
105 | set {
|
---|
106 | if (tree == null) tree = new TreeNode[value.Length];
|
---|
107 | for (int i = 0; i < value.Length; i++) {
|
---|
108 | tree[i].VarName = value[i];
|
---|
109 | }
|
---|
110 | }
|
---|
111 | }
|
---|
112 | [Storable]
|
---|
113 | private double[] SerializedTreeValues {
|
---|
114 | get { return tree.Select(t => t.Val).ToArray(); }
|
---|
115 | set {
|
---|
116 | if (tree == null) tree = new TreeNode[value.Length];
|
---|
117 | for (int i = 0; i < value.Length; i++) {
|
---|
118 | tree[i].Val = value[i];
|
---|
119 | }
|
---|
120 | }
|
---|
121 | }
|
---|
122 | [Storable]
|
---|
123 | private int[] SerializedTreeLeftIdx {
|
---|
124 | get { return tree.Select(t => t.LeftIdx).ToArray(); }
|
---|
125 | set {
|
---|
126 | if (tree == null) tree = new TreeNode[value.Length];
|
---|
127 | for (int i = 0; i < value.Length; i++) {
|
---|
128 | tree[i].LeftIdx = value[i];
|
---|
129 | }
|
---|
130 | }
|
---|
131 | }
|
---|
132 | [Storable]
|
---|
133 | private int[] SerializedTreeRightIdx {
|
---|
134 | get { return tree.Select(t => t.RightIdx).ToArray(); }
|
---|
135 | set {
|
---|
136 | if (tree == null) tree = new TreeNode[value.Length];
|
---|
137 | for (int i = 0; i < value.Length; i++) {
|
---|
138 | tree[i].RightIdx = value[i];
|
---|
139 | }
|
---|
140 | }
|
---|
141 | }
|
---|
142 | [Storable]
|
---|
143 | private double[] SerializedTreeWeightLeft {
|
---|
144 | get { return tree.Select(t => t.WeightLeft).ToArray(); }
|
---|
145 | set {
|
---|
146 | if (tree == null) tree = new TreeNode[value.Length];
|
---|
147 | for (int i = 0; i < value.Length; i++) {
|
---|
148 | tree[i].WeightLeft = value[i];
|
---|
149 | }
|
---|
150 | }
|
---|
151 | }
|
---|
152 | #endregion
|
---|
153 |
|
---|
154 | [StorableConstructor]
|
---|
155 | private RegressionTreeModel(StorableConstructorFlag _) : base(_) { }
|
---|
156 | // cloning ctor
|
---|
157 | private RegressionTreeModel(RegressionTreeModel original, Cloner cloner)
|
---|
158 | : base(original, cloner) {
|
---|
159 | if (original.tree != null) {
|
---|
160 | this.tree = new TreeNode[original.tree.Length];
|
---|
161 | Array.Copy(original.tree, this.tree, this.tree.Length);
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | internal RegressionTreeModel(TreeNode[] tree, string targetVariable)
|
---|
166 | : base(targetVariable, "RegressionTreeModel", "Represents a decision tree for regression.") {
|
---|
167 | this.tree = tree;
|
---|
168 | }
|
---|
169 |
|
---|
170 | private static double GetPredictionForRow(TreeNode[] t, ReadOnlyCollection<double>[] columnCache, int nodeIdx, int row) {
|
---|
171 | while (nodeIdx != -1) {
|
---|
172 | var node = t[nodeIdx];
|
---|
173 | if (node.VarName == TreeNode.NO_VARIABLE)
|
---|
174 | return node.Val;
|
---|
175 | if (columnCache[nodeIdx] == null || double.IsNaN(columnCache[nodeIdx][row])) {
|
---|
176 | if (node.WeightLeft.IsAlmost(-1.0)) throw new InvalidOperationException("Cannot calculate partial dependence for trees loaded from older versions of HeuristicLab.");
|
---|
177 | // weighted average for partial dependence plot (recursive here because we need to calculate both sub-trees)
|
---|
178 | return node.WeightLeft * GetPredictionForRow(t, columnCache, node.LeftIdx, row) +
|
---|
179 | (1.0 - node.WeightLeft) * GetPredictionForRow(t, columnCache, node.RightIdx, row);
|
---|
180 | } else if (columnCache[nodeIdx][row] <= node.Val)
|
---|
181 | nodeIdx = node.LeftIdx;
|
---|
182 | else
|
---|
183 | nodeIdx = node.RightIdx;
|
---|
184 | }
|
---|
185 | throw new InvalidOperationException("Invalid tree in RegressionTreeModel");
|
---|
186 | }
|
---|
187 |
|
---|
188 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
189 | return new RegressionTreeModel(this, cloner);
|
---|
190 | }
|
---|
191 |
|
---|
192 | public override IEnumerable<double> GetEstimatedValues(IDataset ds, IEnumerable<int> rows) {
|
---|
193 | // lookup columns for variableNames in one pass over the tree to speed up evaluation later on
|
---|
194 | ReadOnlyCollection<double>[] columnCache = new ReadOnlyCollection<double>[tree.Length];
|
---|
195 |
|
---|
196 | for (int i = 0; i < tree.Length; i++) {
|
---|
197 | if (tree[i].VarName != TreeNode.NO_VARIABLE) {
|
---|
198 | // tree models also support calculating estimations if not all variables used for training are available in the dataset
|
---|
199 | if (ds.ColumnNames.Contains(tree[i].VarName))
|
---|
200 | columnCache[i] = ds.GetReadOnlyDoubleValues(tree[i].VarName);
|
---|
201 | }
|
---|
202 | }
|
---|
203 | return rows.Select(r => GetPredictionForRow(tree, columnCache, 0, r));
|
---|
204 | }
|
---|
205 |
|
---|
206 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
207 | return new RegressionSolution(this, new RegressionProblemData(problemData));
|
---|
208 | }
|
---|
209 |
|
---|
210 | // mainly for debugging
|
---|
211 | public override string ToString() {
|
---|
212 | return TreeToString(0, "");
|
---|
213 | }
|
---|
214 |
|
---|
215 | /// <summary>
|
---|
216 | /// Transforms the tree model to a symbolic regression solution
|
---|
217 | /// </summary>
|
---|
218 | /// <param name="problemData"></param>
|
---|
219 | /// <returns>A new symbolic regression solution which matches the tree model</returns>
|
---|
220 | public ISymbolicRegressionSolution CreateSymbolicRegressionSolution(IRegressionProblemData problemData) {
|
---|
221 | return CreateSymbolicRegressionModel().CreateRegressionSolution(problemData);
|
---|
222 | }
|
---|
223 |
|
---|
224 | /// <summary>
|
---|
225 | /// Transforms the tree model to a symbolic regression model
|
---|
226 | /// </summary>
|
---|
227 | /// <returns>A new symbolic regression model which matches the tree model</returns>
|
---|
228 | public SymbolicRegressionModel CreateSymbolicRegressionModel() {
|
---|
229 | var rootSy = new ProgramRootSymbol();
|
---|
230 | var startSy = new StartSymbol();
|
---|
231 | var varCondSy = new VariableCondition() { IgnoreSlope = true };
|
---|
232 | var constSy = new Constant();
|
---|
233 |
|
---|
234 | var startNode = startSy.CreateTreeNode();
|
---|
235 | startNode.AddSubtree(CreateSymbolicRegressionTreeRecursive(tree, 0, varCondSy, constSy));
|
---|
236 | var rootNode = rootSy.CreateTreeNode();
|
---|
237 | rootNode.AddSubtree(startNode);
|
---|
238 | return new SymbolicRegressionModel(TargetVariable, new SymbolicExpressionTree(rootNode), new SymbolicDataAnalysisExpressionTreeLinearInterpreter());
|
---|
239 | }
|
---|
240 |
|
---|
241 | private ISymbolicExpressionTreeNode CreateSymbolicRegressionTreeRecursive(TreeNode[] treeNodes, int nodeIdx, VariableCondition varCondSy, Constant constSy) {
|
---|
242 | var curNode = treeNodes[nodeIdx];
|
---|
243 | if (curNode.VarName == TreeNode.NO_VARIABLE) {
|
---|
244 | var node = (ConstantTreeNode)constSy.CreateTreeNode();
|
---|
245 | node.Value = curNode.Val;
|
---|
246 | return node;
|
---|
247 | } else {
|
---|
248 | var node = (VariableConditionTreeNode)varCondSy.CreateTreeNode();
|
---|
249 | node.VariableName = curNode.VarName;
|
---|
250 | node.Threshold = curNode.Val;
|
---|
251 |
|
---|
252 | var left = CreateSymbolicRegressionTreeRecursive(treeNodes, curNode.LeftIdx, varCondSy, constSy);
|
---|
253 | var right = CreateSymbolicRegressionTreeRecursive(treeNodes, curNode.RightIdx, varCondSy, constSy);
|
---|
254 | node.AddSubtree(left);
|
---|
255 | node.AddSubtree(right);
|
---|
256 | return node;
|
---|
257 | }
|
---|
258 | }
|
---|
259 |
|
---|
260 |
|
---|
261 | private string TreeToString(int idx, string part) {
|
---|
262 | var n = tree[idx];
|
---|
263 | if (n.VarName == TreeNode.NO_VARIABLE) {
|
---|
264 | return string.Format(CultureInfo.InvariantCulture, "{0} -> {1:F}{2}", part, n.Val, Environment.NewLine);
|
---|
265 | } else {
|
---|
266 | return
|
---|
267 | TreeToString(n.LeftIdx, string.Format(CultureInfo.InvariantCulture, "{0}{1}{2} <= {3:F} ({4:N3})", part, string.IsNullOrEmpty(part) ? "" : " and ", n.VarName, n.Val, n.WeightLeft))
|
---|
268 | + TreeToString(n.RightIdx, string.Format(CultureInfo.InvariantCulture, "{0}{1}{2} > {3:F} ({4:N3}))", part, string.IsNullOrEmpty(part) ? "" : " and ", n.VarName, n.Val, 1.0 - n.WeightLeft));
|
---|
269 | }
|
---|
270 | }
|
---|
271 |
|
---|
272 | }
|
---|
273 | }
|
---|