1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | *
|
---|
20 | * Author: Sabine Winkler
|
---|
21 | */
|
---|
22 | #endregion
|
---|
23 |
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.Problems.GeneticProgramming.ArtificialAnt;
|
---|
33 | using HeuristicLab.Problems.GrammaticalEvolution.Mappers;
|
---|
34 | using HeuristicLab.Random;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Problems.GrammaticalEvolution {
|
---|
37 | [Item("Grammatical Evolution Artificial Ant Problem (GE)", "Represents the Artificial Ant problem, implemented in Grammatical Evolution.")]
|
---|
38 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 170)]
|
---|
39 | [StorableClass]
|
---|
40 | public sealed class GEArtificialAntProblem : SingleObjectiveBasicProblem<IntegerVectorEncoding>, IStorableContent {
|
---|
41 |
|
---|
42 | #region Parameter Properties
|
---|
43 | public IValueParameter<BoolMatrix> WorldParameter {
|
---|
44 | get { return (IValueParameter<BoolMatrix>)Parameters["World"]; }
|
---|
45 | }
|
---|
46 | public IFixedValueParameter<IntValue> MaxTimeStepsParameter {
|
---|
47 | get { return (IFixedValueParameter<IntValue>)Parameters["MaximumTimeSteps"]; }
|
---|
48 | }
|
---|
49 | public IValueParameter<IGenotypeToPhenotypeMapper> GenotypeToPhenotypeMapperParameter {
|
---|
50 | get { return (IValueParameter<IGenotypeToPhenotypeMapper>)Parameters["GenotypeToPhenotypeMapper"]; }
|
---|
51 | }
|
---|
52 | #endregion
|
---|
53 |
|
---|
54 | #region Properties
|
---|
55 | public BoolMatrix World {
|
---|
56 | get { return WorldParameter.Value; }
|
---|
57 | set { WorldParameter.Value = value; }
|
---|
58 | }
|
---|
59 | public int MaxTimeSteps {
|
---|
60 | get { return MaxTimeStepsParameter.Value.Value; }
|
---|
61 | set { MaxTimeStepsParameter.Value.Value = value; }
|
---|
62 | }
|
---|
63 | #endregion
|
---|
64 |
|
---|
65 | [StorableConstructor]
|
---|
66 | private GEArtificialAntProblem(bool deserializing) : base(deserializing) { }
|
---|
67 | [StorableHook(HookType.AfterDeserialization)]
|
---|
68 | private void AfterDeserialization() { }
|
---|
69 |
|
---|
70 | public override bool Maximization {
|
---|
71 | get { return true; }
|
---|
72 | }
|
---|
73 |
|
---|
74 | [Storable]
|
---|
75 | // parameters of the wrapped problem cannot be changed therefore it is not strictly necessary to clone and store it
|
---|
76 | private readonly HeuristicLab.Problems.GeneticProgramming.ArtificialAnt.Problem wrappedAntProblem;
|
---|
77 |
|
---|
78 | private GEArtificialAntProblem(GEArtificialAntProblem original, Cloner cloner)
|
---|
79 | : base(original, cloner) {
|
---|
80 | this.wrappedAntProblem = cloner.Clone(original.wrappedAntProblem);
|
---|
81 | }
|
---|
82 |
|
---|
83 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
84 | return new GEArtificialAntProblem(this, cloner);
|
---|
85 | }
|
---|
86 |
|
---|
87 | public GEArtificialAntProblem()
|
---|
88 | : base() {
|
---|
89 | wrappedAntProblem = new HeuristicLab.Problems.GeneticProgramming.ArtificialAnt.Problem();
|
---|
90 | Parameters.Add(new ValueParameter<BoolMatrix>("World", "The world for the artificial ant with scattered food items.", wrappedAntProblem.World));
|
---|
91 | Parameters.Add(new FixedValueParameter<IntValue>("MaximumTimeSteps", "The number of time steps the artificial ant has available to collect all food items.", new IntValue(600)));
|
---|
92 | Parameters.Add(new ValueParameter<IGenotypeToPhenotypeMapper>("GenotypeToPhenotypeMapper", "Maps the genotype (an integer vector) to the phenotype (a symbolic expression tree).", new DepthFirstMapper()));
|
---|
93 |
|
---|
94 | Encoding = new IntegerVectorEncoding(30) { Bounds = new IntMatrix(new int[,] { { 0, 100 } }) };
|
---|
95 |
|
---|
96 | BestKnownQuality = wrappedAntProblem.BestKnownQuality;
|
---|
97 | }
|
---|
98 |
|
---|
99 | private readonly object syncRoot = new object();
|
---|
100 | public override double Evaluate(Individual individual, IRandom random) {
|
---|
101 | var vector = individual.IntegerVector();
|
---|
102 |
|
---|
103 | var bounds = Encoding.Bounds;
|
---|
104 | var len = Encoding.Length;
|
---|
105 | var grammar = wrappedAntProblem.Encoding.Grammar;
|
---|
106 | var mapper = GenotypeToPhenotypeMapperParameter.Value;
|
---|
107 |
|
---|
108 | // Evaluate might be called concurrently therefore access to random has to be synchronized.
|
---|
109 | // However, results depend on the order of execution. Therefore, results might be different for the same seed when using the parallel engine.
|
---|
110 | IRandom fastRand;
|
---|
111 | lock (syncRoot) {
|
---|
112 | fastRand = new FastRandom(random.Next());
|
---|
113 | }
|
---|
114 | var tree = mapper.Map(fastRand, bounds, len, grammar, vector);
|
---|
115 |
|
---|
116 | Interpreter interpreter = new Interpreter(tree, World, MaxTimeSteps);
|
---|
117 | interpreter.Run();
|
---|
118 |
|
---|
119 | return interpreter.FoodEaten;
|
---|
120 | }
|
---|
121 |
|
---|
122 | public override void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) {
|
---|
123 | var bounds = Encoding.Bounds;
|
---|
124 | var len = Encoding.Length;
|
---|
125 | var grammar = wrappedAntProblem.Encoding.Grammar;
|
---|
126 | var mapper = GenotypeToPhenotypeMapperParameter.Value;
|
---|
127 |
|
---|
128 | var trees = individuals
|
---|
129 | .Select(ind => mapper.Map(random, bounds, len, grammar, ind.IntegerVector()))
|
---|
130 | .ToArray();
|
---|
131 |
|
---|
132 | wrappedAntProblem.Analyze(trees, qualities, results, random);
|
---|
133 | }
|
---|
134 | }
|
---|
135 | } |
---|