1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.Orienteering {
|
---|
34 | /// <summary>
|
---|
35 | /// Iterative improvement consists of three basic operators: shortening, vertex insert and vertex
|
---|
36 | /// exchange. The shortening operator tries to rearrange the vertices within a tour in order to
|
---|
37 | /// minimize the cost of the tour. As shortening operator a 2-opt is applied. (Schilde et. al. 2009)
|
---|
38 | /// </summary>
|
---|
39 | [Item("OrienteeringLocalImprovementOperator", @"Implements the iterative improvement procedure described in Schilde M., Doerner K.F., Hartl R.F., Kiechle G. 2009. Metaheuristics for the bi-objective orienteering problem. Swarm Intelligence, Volume 3, Issue 3, pp 179-201.")]
|
---|
40 | [StorableClass]
|
---|
41 | public sealed class OrienteeringLocalImprovementOperator : SingleSuccessorOperator, ILocalImprovementOperator {
|
---|
42 |
|
---|
43 | #region Parameter Properties
|
---|
44 | public ILookupParameter<IntegerVector> IntegerVectorParameter {
|
---|
45 | get { return (ILookupParameter<IntegerVector>)Parameters["OrienteeringSolution"]; }
|
---|
46 | }
|
---|
47 | public ILookupParameter<DistanceMatrix> DistanceMatrixParameter {
|
---|
48 | get { return (ILookupParameter<DistanceMatrix>)Parameters["DistanceMatrix"]; }
|
---|
49 | }
|
---|
50 | public ILookupParameter<DoubleArray> ScoresParameter {
|
---|
51 | get { return (ILookupParameter<DoubleArray>)Parameters["Scores"]; }
|
---|
52 | }
|
---|
53 | public ILookupParameter<DoubleValue> MaximumDistanceParameter {
|
---|
54 | get { return (ILookupParameter<DoubleValue>)Parameters["MaximumDistance"]; }
|
---|
55 | }
|
---|
56 | public ILookupParameter<IntValue> StartingPointParameter {
|
---|
57 | get { return (ILookupParameter<IntValue>)Parameters["StartingPoint"]; }
|
---|
58 | }
|
---|
59 | public ILookupParameter<IntValue> TerminalPointParameter {
|
---|
60 | get { return (ILookupParameter<IntValue>)Parameters["TerminalPoint"]; }
|
---|
61 | }
|
---|
62 | public ILookupParameter<DoubleValue> PointVisitingCostsParameter {
|
---|
63 | get { return (ILookupParameter<DoubleValue>)Parameters["PointVisitingCosts"]; }
|
---|
64 | }
|
---|
65 | #region ILocalImprovementOperator Parameters
|
---|
66 | public IValueLookupParameter<IntValue> LocalIterationsParameter {
|
---|
67 | get { return (IValueLookupParameter<IntValue>)Parameters["LocalIterations"]; }
|
---|
68 | }
|
---|
69 | public IValueLookupParameter<IntValue> MaximumIterationsParameter {
|
---|
70 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumIterations"]; }
|
---|
71 | }
|
---|
72 | public ILookupParameter<IntValue> EvaluatedSolutionsParameter {
|
---|
73 | get { return (ILookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
|
---|
74 | }
|
---|
75 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
76 | get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
77 | }
|
---|
78 | #endregion
|
---|
79 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
80 | get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
81 | }
|
---|
82 | public IValueParameter<IntValue> MaximumBlockLengthParmeter {
|
---|
83 | get { return (IValueParameter<IntValue>)Parameters["MaximumBlockLength"]; }
|
---|
84 | }
|
---|
85 | public IValueParameter<BoolValue> UseMaximumBlockLengthParmeter {
|
---|
86 | get { return (IValueParameter<BoolValue>)Parameters["UseMaximumBlockLength"]; }
|
---|
87 | }
|
---|
88 | #endregion
|
---|
89 |
|
---|
90 | [StorableConstructor]
|
---|
91 | private OrienteeringLocalImprovementOperator(bool deserializing) : base(deserializing) { }
|
---|
92 | private OrienteeringLocalImprovementOperator(OrienteeringLocalImprovementOperator original, Cloner cloner)
|
---|
93 | : base(original, cloner) {
|
---|
94 | }
|
---|
95 | public OrienteeringLocalImprovementOperator()
|
---|
96 | : base() {
|
---|
97 | Parameters.Add(new LookupParameter<IntegerVector>("OrienteeringSolution", "The Orienteering Solution given in path representation."));
|
---|
98 | Parameters.Add(new LookupParameter<DistanceMatrix>("DistanceMatrix", "The matrix which contains the distances between the points."));
|
---|
99 | Parameters.Add(new LookupParameter<DoubleArray>("Scores", "The scores of the points."));
|
---|
100 | Parameters.Add(new LookupParameter<DoubleValue>("MaximumDistance", "The maximum distance constraint for a Orienteering solution."));
|
---|
101 | Parameters.Add(new LookupParameter<IntValue>("StartingPoint", "Index of the starting point."));
|
---|
102 | Parameters.Add(new LookupParameter<IntValue>("TerminalPoint", "Index of the ending point."));
|
---|
103 | Parameters.Add(new LookupParameter<DoubleValue>("PointVisitingCosts", "The costs for visiting a point."));
|
---|
104 |
|
---|
105 | Parameters.Add(new ValueLookupParameter<IntValue>("LocalIterations", "The number of iterations that have already been performed.", new IntValue(0)));
|
---|
106 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The maximum number of generations which should be processed.", new IntValue(150)));
|
---|
107 | Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of evaluated moves."));
|
---|
108 | Parameters.Add(new LookupParameter<ResultCollection>("Results", "The name of the collection where the results are stored."));
|
---|
109 | Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality value of the solution."));
|
---|
110 |
|
---|
111 | Parameters.Add(new ValueParameter<IntValue>("MaximumBlockLength", "The maximum length of the 2-opt shortening.", new IntValue(30)));
|
---|
112 | Parameters.Add(new ValueParameter<BoolValue>("UseMaximumBlockLength", "Use a limitation of the length for the 2-opt shortening.", new BoolValue(false)));
|
---|
113 | }
|
---|
114 |
|
---|
115 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
116 | return new OrienteeringLocalImprovementOperator(this, cloner);
|
---|
117 | }
|
---|
118 |
|
---|
119 | public override IOperation Apply() {
|
---|
120 | int numPoints = ScoresParameter.ActualValue.Length;
|
---|
121 | var distances = DistanceMatrixParameter.ActualValue;
|
---|
122 | var scores = ScoresParameter.ActualValue;
|
---|
123 | double pointVisitingCosts = PointVisitingCostsParameter.ActualValue.Value;
|
---|
124 | double maxLength = MaximumDistanceParameter.ActualValue.Value;
|
---|
125 | int maxIterations = MaximumIterationsParameter.ActualValue.Value;
|
---|
126 | int maxBlockLength = MaximumBlockLengthParmeter.Value.Value;
|
---|
127 | bool useMaxBlockLength = UseMaximumBlockLengthParmeter.Value.Value;
|
---|
128 |
|
---|
129 | bool solutionChanged = true;
|
---|
130 |
|
---|
131 | var tour = IntegerVectorParameter.ActualValue.ToList();
|
---|
132 |
|
---|
133 | double tourLength = 0;
|
---|
134 | double tourScore = tour.Sum(point => scores[point]);
|
---|
135 |
|
---|
136 | var localIterations = LocalIterationsParameter.ActualValue;
|
---|
137 | var evaluatedSolutions = EvaluatedSolutionsParameter.ActualValue;
|
---|
138 | int evaluations = 0;
|
---|
139 |
|
---|
140 | // Check if the tour can be improved by adding or replacing points
|
---|
141 | while (solutionChanged && localIterations.Value < maxIterations) {
|
---|
142 | solutionChanged = false;
|
---|
143 |
|
---|
144 | if (localIterations.Value == 0)
|
---|
145 | tourLength = distances.CalculateTourLength(tour, pointVisitingCosts);
|
---|
146 |
|
---|
147 | // Try to shorten the path
|
---|
148 | ShortenPath(tour, distances, maxBlockLength, useMaxBlockLength, ref tourLength, ref evaluations);
|
---|
149 |
|
---|
150 | // Determine all points that have not yet been visited by this tour
|
---|
151 | var visitablePoints = Enumerable.Range(0, numPoints).Except(tour).ToList();
|
---|
152 |
|
---|
153 | // Determine if any of the visitable points can be included at any position within the tour
|
---|
154 | IncludeNewPoints(tour, visitablePoints,
|
---|
155 | distances, pointVisitingCosts, maxLength, scores,
|
---|
156 | ref tourLength, ref tourScore, ref evaluations, ref solutionChanged);
|
---|
157 |
|
---|
158 | // Determine if any of the visitable points can take the place of an already visited point in the tour to improve the scores
|
---|
159 | ReplacePoints(tour, visitablePoints,
|
---|
160 | distances, maxLength, scores,
|
---|
161 | ref tourLength, ref tourScore, ref evaluations, ref solutionChanged);
|
---|
162 |
|
---|
163 | localIterations.Value++;
|
---|
164 | }
|
---|
165 |
|
---|
166 | localIterations.Value = 0;
|
---|
167 | evaluatedSolutions.Value += evaluations;
|
---|
168 |
|
---|
169 | // Set new tour
|
---|
170 | IntegerVectorParameter.ActualValue = new IntegerVector(tour.ToArray());
|
---|
171 | QualityParameter.ActualValue.Value = tourScore;
|
---|
172 |
|
---|
173 | return base.Apply();
|
---|
174 | }
|
---|
175 |
|
---|
176 | private void ShortenPath(List<int> tour, DistanceMatrix distances, int maxBlockLength, bool useMaxBlockLength, ref double tourLength, ref int evaluations) {
|
---|
177 | bool solutionChanged;
|
---|
178 | int pathSize = tour.Count;
|
---|
179 | maxBlockLength = (useMaxBlockLength && (pathSize > maxBlockLength + 1)) ? maxBlockLength : (pathSize - 2);
|
---|
180 |
|
---|
181 | // Perform a 2-opt
|
---|
182 | do {
|
---|
183 | solutionChanged = false;
|
---|
184 |
|
---|
185 | for (int blockLength = 2; blockLength < maxBlockLength; blockLength++) {
|
---|
186 | // If an optimization has been done, start from the beginning
|
---|
187 | if (solutionChanged) break;
|
---|
188 |
|
---|
189 | for (int position = 1; position < (pathSize - blockLength); position++) {
|
---|
190 | // If an optimization has been done, start from the beginning
|
---|
191 | if (solutionChanged) break;
|
---|
192 |
|
---|
193 | evaluations++;
|
---|
194 |
|
---|
195 | double newLength = tourLength;
|
---|
196 | // Recalculate length of whole swapped part, in case distances are not symmetric
|
---|
197 | for (int index = position - 1; index < position + blockLength; index++) newLength -= distances[tour[index], tour[index + 1]];
|
---|
198 | for (int index = position + blockLength - 1; index > position; index--) newLength += distances[tour[index], tour[index - 1]];
|
---|
199 | newLength += distances[tour[position - 1], tour[position + blockLength - 1]];
|
---|
200 | newLength += distances[tour[position], tour[position + blockLength]];
|
---|
201 |
|
---|
202 | if (newLength < tourLength - 0.00001) {
|
---|
203 | // Avoid cycling caused by precision
|
---|
204 | var reversePart = tour.GetRange(position, blockLength).AsEnumerable().Reverse();
|
---|
205 |
|
---|
206 | tour.RemoveRange(position, blockLength);
|
---|
207 | tour.InsertRange(position, reversePart);
|
---|
208 |
|
---|
209 | tourLength = newLength;
|
---|
210 |
|
---|
211 | // Re-run the optimization
|
---|
212 | solutionChanged = true;
|
---|
213 | }
|
---|
214 | }
|
---|
215 | }
|
---|
216 | } while (solutionChanged);
|
---|
217 | }
|
---|
218 |
|
---|
219 | private void IncludeNewPoints(List<int> tour, List<int> visitablePoints,
|
---|
220 | DistanceMatrix distances, double pointVisitingCosts, double maxLength, DoubleArray scores,
|
---|
221 | ref double tourLength, ref double tourScore, ref int evaluations, ref bool solutionChanged) {
|
---|
222 |
|
---|
223 | for (int tourPosition = 1; tourPosition < tour.Count; tourPosition++) {
|
---|
224 | // If an optimization has been done, start from the beginning
|
---|
225 | if (solutionChanged) break;
|
---|
226 |
|
---|
227 | for (int i = 0; i < visitablePoints.Count; i++) {
|
---|
228 | // If an optimization has been done, start from the beginning
|
---|
229 | if (solutionChanged) break;
|
---|
230 |
|
---|
231 | evaluations++;
|
---|
232 |
|
---|
233 | double detour = distances.CalculateInsertionCosts(tour, tourPosition, visitablePoints[i], pointVisitingCosts);
|
---|
234 |
|
---|
235 | // Determine if including the point does not violate any constraint
|
---|
236 | if (tourLength + detour <= maxLength) {
|
---|
237 | // Insert the new point at this position
|
---|
238 | tour.Insert(tourPosition, visitablePoints[i]);
|
---|
239 |
|
---|
240 | // Update the overall tour tourLength and score
|
---|
241 | tourLength += detour;
|
---|
242 | tourScore += scores[visitablePoints[i]];
|
---|
243 |
|
---|
244 | // Re-run this optimization
|
---|
245 | solutionChanged = true;
|
---|
246 | }
|
---|
247 | }
|
---|
248 | }
|
---|
249 | }
|
---|
250 |
|
---|
251 | private void ReplacePoints(List<int> tour, List<int> visitablePoints,
|
---|
252 | DistanceMatrix distances, double maxLength, DoubleArray scores,
|
---|
253 | ref double tourLength, ref double tourScore, ref int evaluations, ref bool solutionChanged) {
|
---|
254 |
|
---|
255 | for (int tourPosition = 1; tourPosition < tour.Count - 1; tourPosition++) {
|
---|
256 | // If an optimization has been done, start from the beginning
|
---|
257 | if (solutionChanged) break;
|
---|
258 |
|
---|
259 | for (int i = 0; i < visitablePoints.Count; i++) {
|
---|
260 | // If an optimization has been done, start from the beginning
|
---|
261 | if (solutionChanged) break;
|
---|
262 |
|
---|
263 | evaluations++;
|
---|
264 |
|
---|
265 | double detour = distances.CalculateReplacementCosts(tour, tourPosition, visitablePoints[i]);
|
---|
266 |
|
---|
267 | double oldPointScore = scores[tour[tourPosition]];
|
---|
268 | double newPointScore = scores[visitablePoints[i]];
|
---|
269 |
|
---|
270 | if ((tourLength + detour <= maxLength) && (newPointScore > oldPointScore)) {
|
---|
271 | // Replace the old point by the new one
|
---|
272 | tour[tourPosition] = visitablePoints[i];
|
---|
273 |
|
---|
274 | // Update the overall tour tourLength
|
---|
275 | tourLength += detour;
|
---|
276 |
|
---|
277 | // Update the scores achieved by visiting this point
|
---|
278 | tourScore += newPointScore - oldPointScore;
|
---|
279 |
|
---|
280 | // Re-run this optimization
|
---|
281 | solutionChanged = true;
|
---|
282 | }
|
---|
283 | }
|
---|
284 | }
|
---|
285 | }
|
---|
286 | }
|
---|
287 | } |
---|