1 | // ZipCrypto.cs
|
---|
2 | // ------------------------------------------------------------------
|
---|
3 | //
|
---|
4 | // Copyright (c) 2008, 2009, 2011 Dino Chiesa
|
---|
5 | // All rights reserved.
|
---|
6 | //
|
---|
7 | // This code module is part of DotNetZip, a zipfile class library.
|
---|
8 | //
|
---|
9 | // ------------------------------------------------------------------
|
---|
10 | //
|
---|
11 | // This code is licensed under the Microsoft Public License.
|
---|
12 | // See the file License.txt for the license details.
|
---|
13 | // More info on: http://dotnetzip.codeplex.com
|
---|
14 | //
|
---|
15 | // ------------------------------------------------------------------
|
---|
16 | //
|
---|
17 | // last saved (in emacs):
|
---|
18 | // Time-stamp: <2011-July-28 06:30:59>
|
---|
19 | //
|
---|
20 | // ------------------------------------------------------------------
|
---|
21 | //
|
---|
22 | // This module provides the implementation for "traditional" Zip encryption.
|
---|
23 | //
|
---|
24 | // Created Tue Apr 15 17:39:56 2008
|
---|
25 | //
|
---|
26 | // ------------------------------------------------------------------
|
---|
27 |
|
---|
28 | using System;
|
---|
29 |
|
---|
30 | namespace OfficeOpenXml.Packaging.Ionic.Zip
|
---|
31 | {
|
---|
32 | /// <summary>
|
---|
33 | /// This class implements the "traditional" or "classic" PKZip encryption,
|
---|
34 | /// which today is considered to be weak. On the other hand it is
|
---|
35 | /// ubiquitous. This class is intended for use only by the DotNetZip
|
---|
36 | /// library.
|
---|
37 | /// </summary>
|
---|
38 | ///
|
---|
39 | /// <remarks>
|
---|
40 | /// Most uses of the DotNetZip library will not involve direct calls into
|
---|
41 | /// the ZipCrypto class. Instead, the ZipCrypto class is instantiated and
|
---|
42 | /// used by the ZipEntry() class when encryption or decryption on an entry
|
---|
43 | /// is employed. If for some reason you really wanted to use a weak
|
---|
44 | /// encryption algorithm in some other application, you might use this
|
---|
45 | /// library. But you would be much better off using one of the built-in
|
---|
46 | /// strong encryption libraries in the .NET Framework, like the AES
|
---|
47 | /// algorithm or SHA.
|
---|
48 | /// </remarks>
|
---|
49 | internal class ZipCrypto
|
---|
50 | {
|
---|
51 | /// <summary>
|
---|
52 | /// The default constructor for ZipCrypto.
|
---|
53 | /// </summary>
|
---|
54 | ///
|
---|
55 | /// <remarks>
|
---|
56 | /// This class is intended for internal use by the library only. It's
|
---|
57 | /// probably not useful to you. Seriously. Stop reading this
|
---|
58 | /// documentation. It's a waste of your time. Go do something else.
|
---|
59 | /// Check the football scores. Go get an ice cream with a friend.
|
---|
60 | /// Seriously.
|
---|
61 | /// </remarks>
|
---|
62 | ///
|
---|
63 | private ZipCrypto() { }
|
---|
64 |
|
---|
65 | public static ZipCrypto ForWrite(string password)
|
---|
66 | {
|
---|
67 | ZipCrypto z = new ZipCrypto();
|
---|
68 | if (password == null)
|
---|
69 | throw new BadPasswordException("This entry requires a password.");
|
---|
70 | z.InitCipher(password);
|
---|
71 | return z;
|
---|
72 | }
|
---|
73 |
|
---|
74 |
|
---|
75 | public static ZipCrypto ForRead(string password, ZipEntry e)
|
---|
76 | {
|
---|
77 | System.IO.Stream s = e._archiveStream;
|
---|
78 | e._WeakEncryptionHeader = new byte[12];
|
---|
79 | byte[] eh = e._WeakEncryptionHeader;
|
---|
80 | ZipCrypto z = new ZipCrypto();
|
---|
81 |
|
---|
82 | if (password == null)
|
---|
83 | throw new BadPasswordException("This entry requires a password.");
|
---|
84 |
|
---|
85 | z.InitCipher(password);
|
---|
86 |
|
---|
87 | ZipEntry.ReadWeakEncryptionHeader(s, eh);
|
---|
88 |
|
---|
89 | // Decrypt the header. This has a side effect of "further initializing the
|
---|
90 | // encryption keys" in the traditional zip encryption.
|
---|
91 | byte[] DecryptedHeader = z.DecryptMessage(eh, eh.Length);
|
---|
92 |
|
---|
93 | // CRC check
|
---|
94 | // According to the pkzip spec, the final byte in the decrypted header
|
---|
95 | // is the highest-order byte in the CRC. We check it here.
|
---|
96 | if (DecryptedHeader[11] != (byte)((e._Crc32 >> 24) & 0xff))
|
---|
97 | {
|
---|
98 | // In the case that bit 3 of the general purpose bit flag is set to
|
---|
99 | // indicate the presence of an 'Extended File Header' or a 'data
|
---|
100 | // descriptor' (signature 0x08074b50), the last byte of the decrypted
|
---|
101 | // header is sometimes compared with the high-order byte of the
|
---|
102 | // lastmodified time, rather than the high-order byte of the CRC, to
|
---|
103 | // verify the password.
|
---|
104 | //
|
---|
105 | // This is not documented in the PKWare Appnote.txt. It was
|
---|
106 | // discovered this by analysis of the Crypt.c source file in the
|
---|
107 | // InfoZip library http://www.info-zip.org/pub/infozip/
|
---|
108 | //
|
---|
109 | // The reason for this is that the CRC for a file cannot be known
|
---|
110 | // until the entire contents of the file have been streamed. This
|
---|
111 | // means a tool would have to read the file content TWICE in its
|
---|
112 | // entirety in order to perform PKZIP encryption - once to compute
|
---|
113 | // the CRC, and again to actually encrypt.
|
---|
114 | //
|
---|
115 | // This is so important for performance that using the timeblob as
|
---|
116 | // the verification should be the standard practice for DotNetZip
|
---|
117 | // when using PKZIP encryption. This implies that bit 3 must be
|
---|
118 | // set. The downside is that some tools still cannot cope with ZIP
|
---|
119 | // files that use bit 3. Therefore, DotNetZip DOES NOT force bit 3
|
---|
120 | // when PKZIP encryption is in use, and instead, reads the stream
|
---|
121 | // twice.
|
---|
122 | //
|
---|
123 |
|
---|
124 | if ((e._BitField & 0x0008) != 0x0008)
|
---|
125 | {
|
---|
126 | throw new BadPasswordException("The password did not match.");
|
---|
127 | }
|
---|
128 | else if (DecryptedHeader[11] != (byte)((e._TimeBlob >> 8) & 0xff))
|
---|
129 | {
|
---|
130 | throw new BadPasswordException("The password did not match.");
|
---|
131 | }
|
---|
132 |
|
---|
133 | // We have a good password.
|
---|
134 | }
|
---|
135 | else
|
---|
136 | {
|
---|
137 | // A-OK
|
---|
138 | }
|
---|
139 | return z;
|
---|
140 | }
|
---|
141 |
|
---|
142 |
|
---|
143 |
|
---|
144 |
|
---|
145 | /// <summary>
|
---|
146 | /// From AppNote.txt:
|
---|
147 | /// unsigned char decrypt_byte()
|
---|
148 | /// local unsigned short temp
|
---|
149 | /// temp :=- Key(2) | 2
|
---|
150 | /// decrypt_byte := (temp * (temp ^ 1)) bitshift-right 8
|
---|
151 | /// end decrypt_byte
|
---|
152 | /// </summary>
|
---|
153 | private byte MagicByte
|
---|
154 | {
|
---|
155 | get
|
---|
156 | {
|
---|
157 | UInt16 t = (UInt16)((UInt16)(_Keys[2] & 0xFFFF) | 2);
|
---|
158 | return (byte)((t * (t ^ 1)) >> 8);
|
---|
159 | }
|
---|
160 | }
|
---|
161 |
|
---|
162 | // Decrypting:
|
---|
163 | // From AppNote.txt:
|
---|
164 | // loop for i from 0 to 11
|
---|
165 | // C := buffer(i) ^ decrypt_byte()
|
---|
166 | // update_keys(C)
|
---|
167 | // buffer(i) := C
|
---|
168 | // end loop
|
---|
169 |
|
---|
170 |
|
---|
171 | /// <summary>
|
---|
172 | /// Call this method on a cipher text to render the plaintext. You must
|
---|
173 | /// first initialize the cipher with a call to InitCipher.
|
---|
174 | /// </summary>
|
---|
175 | ///
|
---|
176 | /// <example>
|
---|
177 | /// <code>
|
---|
178 | /// var cipher = new ZipCrypto();
|
---|
179 | /// cipher.InitCipher(Password);
|
---|
180 | /// // Decrypt the header. This has a side effect of "further initializing the
|
---|
181 | /// // encryption keys" in the traditional zip encryption.
|
---|
182 | /// byte[] DecryptedMessage = cipher.DecryptMessage(EncryptedMessage);
|
---|
183 | /// </code>
|
---|
184 | /// </example>
|
---|
185 | ///
|
---|
186 | /// <param name="cipherText">The encrypted buffer.</param>
|
---|
187 | /// <param name="length">
|
---|
188 | /// The number of bytes to encrypt.
|
---|
189 | /// Should be less than or equal to CipherText.Length.
|
---|
190 | /// </param>
|
---|
191 | ///
|
---|
192 | /// <returns>The plaintext.</returns>
|
---|
193 | public byte[] DecryptMessage(byte[] cipherText, int length)
|
---|
194 | {
|
---|
195 | if (cipherText == null)
|
---|
196 | throw new ArgumentNullException("cipherText");
|
---|
197 |
|
---|
198 | if (length > cipherText.Length)
|
---|
199 | throw new ArgumentOutOfRangeException("length",
|
---|
200 | "Bad length during Decryption: the length parameter must be smaller than or equal to the size of the destination array.");
|
---|
201 |
|
---|
202 | byte[] plainText = new byte[length];
|
---|
203 | for (int i = 0; i < length; i++)
|
---|
204 | {
|
---|
205 | byte C = (byte)(cipherText[i] ^ MagicByte);
|
---|
206 | UpdateKeys(C);
|
---|
207 | plainText[i] = C;
|
---|
208 | }
|
---|
209 | return plainText;
|
---|
210 | }
|
---|
211 |
|
---|
212 | /// <summary>
|
---|
213 | /// This is the converse of DecryptMessage. It encrypts the plaintext
|
---|
214 | /// and produces a ciphertext.
|
---|
215 | /// </summary>
|
---|
216 | ///
|
---|
217 | /// <param name="plainText">The plain text buffer.</param>
|
---|
218 | ///
|
---|
219 | /// <param name="length">
|
---|
220 | /// The number of bytes to encrypt.
|
---|
221 | /// Should be less than or equal to plainText.Length.
|
---|
222 | /// </param>
|
---|
223 | ///
|
---|
224 | /// <returns>The ciphertext.</returns>
|
---|
225 | public byte[] EncryptMessage(byte[] plainText, int length)
|
---|
226 | {
|
---|
227 | if (plainText == null)
|
---|
228 | throw new ArgumentNullException("plaintext");
|
---|
229 |
|
---|
230 | if (length > plainText.Length)
|
---|
231 | throw new ArgumentOutOfRangeException("length",
|
---|
232 | "Bad length during Encryption: The length parameter must be smaller than or equal to the size of the destination array.");
|
---|
233 |
|
---|
234 | byte[] cipherText = new byte[length];
|
---|
235 | for (int i = 0; i < length; i++)
|
---|
236 | {
|
---|
237 | byte C = plainText[i];
|
---|
238 | cipherText[i] = (byte)(plainText[i] ^ MagicByte);
|
---|
239 | UpdateKeys(C);
|
---|
240 | }
|
---|
241 | return cipherText;
|
---|
242 | }
|
---|
243 |
|
---|
244 |
|
---|
245 | /// <summary>
|
---|
246 | /// This initializes the cipher with the given password.
|
---|
247 | /// See AppNote.txt for details.
|
---|
248 | /// </summary>
|
---|
249 | ///
|
---|
250 | /// <param name="passphrase">
|
---|
251 | /// The passphrase for encrypting or decrypting with this cipher.
|
---|
252 | /// </param>
|
---|
253 | ///
|
---|
254 | /// <remarks>
|
---|
255 | /// <code>
|
---|
256 | /// Step 1 - Initializing the encryption keys
|
---|
257 | /// -----------------------------------------
|
---|
258 | /// Start with these keys:
|
---|
259 | /// Key(0) := 305419896 (0x12345678)
|
---|
260 | /// Key(1) := 591751049 (0x23456789)
|
---|
261 | /// Key(2) := 878082192 (0x34567890)
|
---|
262 | ///
|
---|
263 | /// Then, initialize the keys with a password:
|
---|
264 | ///
|
---|
265 | /// loop for i from 0 to length(password)-1
|
---|
266 | /// update_keys(password(i))
|
---|
267 | /// end loop
|
---|
268 | ///
|
---|
269 | /// Where update_keys() is defined as:
|
---|
270 | ///
|
---|
271 | /// update_keys(char):
|
---|
272 | /// Key(0) := crc32(key(0),char)
|
---|
273 | /// Key(1) := Key(1) + (Key(0) bitwiseAND 000000ffH)
|
---|
274 | /// Key(1) := Key(1) * 134775813 + 1
|
---|
275 | /// Key(2) := crc32(key(2),key(1) rightshift 24)
|
---|
276 | /// end update_keys
|
---|
277 | ///
|
---|
278 | /// Where crc32(old_crc,char) is a routine that given a CRC value and a
|
---|
279 | /// character, returns an updated CRC value after applying the CRC-32
|
---|
280 | /// algorithm described elsewhere in this document.
|
---|
281 | ///
|
---|
282 | /// </code>
|
---|
283 | ///
|
---|
284 | /// <para>
|
---|
285 | /// After the keys are initialized, then you can use the cipher to
|
---|
286 | /// encrypt the plaintext.
|
---|
287 | /// </para>
|
---|
288 | ///
|
---|
289 | /// <para>
|
---|
290 | /// Essentially we encrypt the password with the keys, then discard the
|
---|
291 | /// ciphertext for the password. This initializes the keys for later use.
|
---|
292 | /// </para>
|
---|
293 | ///
|
---|
294 | /// </remarks>
|
---|
295 | public void InitCipher(string passphrase)
|
---|
296 | {
|
---|
297 | byte[] p = SharedUtilities.StringToByteArray(passphrase);
|
---|
298 | for (int i = 0; i < passphrase.Length; i++)
|
---|
299 | UpdateKeys(p[i]);
|
---|
300 | }
|
---|
301 |
|
---|
302 |
|
---|
303 | private void UpdateKeys(byte byteValue)
|
---|
304 | {
|
---|
305 | _Keys[0] = (UInt32)crc32.ComputeCrc32((int)_Keys[0], byteValue);
|
---|
306 | _Keys[1] = _Keys[1] + (byte)_Keys[0];
|
---|
307 | _Keys[1] = _Keys[1] * 0x08088405 + 1;
|
---|
308 | _Keys[2] = (UInt32)crc32.ComputeCrc32((int)_Keys[2], (byte)(_Keys[1] >> 24));
|
---|
309 | }
|
---|
310 |
|
---|
311 | ///// <summary>
|
---|
312 | ///// The byte array representing the seed keys used.
|
---|
313 | ///// Get this after calling InitCipher. The 12 bytes represents
|
---|
314 | ///// what the zip spec calls the "EncryptionHeader".
|
---|
315 | ///// </summary>
|
---|
316 | //public byte[] KeyHeader
|
---|
317 | //{
|
---|
318 | // get
|
---|
319 | // {
|
---|
320 | // byte[] result = new byte[12];
|
---|
321 | // result[0] = (byte)(_Keys[0] & 0xff);
|
---|
322 | // result[1] = (byte)((_Keys[0] >> 8) & 0xff);
|
---|
323 | // result[2] = (byte)((_Keys[0] >> 16) & 0xff);
|
---|
324 | // result[3] = (byte)((_Keys[0] >> 24) & 0xff);
|
---|
325 | // result[4] = (byte)(_Keys[1] & 0xff);
|
---|
326 | // result[5] = (byte)((_Keys[1] >> 8) & 0xff);
|
---|
327 | // result[6] = (byte)((_Keys[1] >> 16) & 0xff);
|
---|
328 | // result[7] = (byte)((_Keys[1] >> 24) & 0xff);
|
---|
329 | // result[8] = (byte)(_Keys[2] & 0xff);
|
---|
330 | // result[9] = (byte)((_Keys[2] >> 8) & 0xff);
|
---|
331 | // result[10] = (byte)((_Keys[2] >> 16) & 0xff);
|
---|
332 | // result[11] = (byte)((_Keys[2] >> 24) & 0xff);
|
---|
333 | // return result;
|
---|
334 | // }
|
---|
335 | //}
|
---|
336 |
|
---|
337 | // private fields for the crypto stuff:
|
---|
338 | private UInt32[] _Keys = { 0x12345678, 0x23456789, 0x34567890 };
|
---|
339 | private Ionic.Crc.CRC32 crc32 = new Ionic.Crc.CRC32();
|
---|
340 |
|
---|
341 | }
|
---|
342 |
|
---|
343 | internal enum CryptoMode
|
---|
344 | {
|
---|
345 | Encrypt,
|
---|
346 | Decrypt
|
---|
347 | }
|
---|
348 |
|
---|
349 | /// <summary>
|
---|
350 | /// A Stream for reading and concurrently decrypting data from a zip file,
|
---|
351 | /// or for writing and concurrently encrypting data to a zip file.
|
---|
352 | /// </summary>
|
---|
353 | internal class ZipCipherStream : System.IO.Stream
|
---|
354 | {
|
---|
355 | private ZipCrypto _cipher;
|
---|
356 | private System.IO.Stream _s;
|
---|
357 | private CryptoMode _mode;
|
---|
358 |
|
---|
359 | /// <summary> The constructor. </summary>
|
---|
360 | /// <param name="s">The underlying stream</param>
|
---|
361 | /// <param name="mode">To either encrypt or decrypt.</param>
|
---|
362 | /// <param name="cipher">The pre-initialized ZipCrypto object.</param>
|
---|
363 | public ZipCipherStream(System.IO.Stream s, ZipCrypto cipher, CryptoMode mode)
|
---|
364 | : base()
|
---|
365 | {
|
---|
366 | _cipher = cipher;
|
---|
367 | _s = s;
|
---|
368 | _mode = mode;
|
---|
369 | }
|
---|
370 |
|
---|
371 | public override int Read(byte[] buffer, int offset, int count)
|
---|
372 | {
|
---|
373 | if (_mode == CryptoMode.Encrypt)
|
---|
374 | throw new NotSupportedException("This stream does not encrypt via Read()");
|
---|
375 |
|
---|
376 | if (buffer == null)
|
---|
377 | throw new ArgumentNullException("buffer");
|
---|
378 |
|
---|
379 | byte[] db = new byte[count];
|
---|
380 | int n = _s.Read(db, 0, count);
|
---|
381 | byte[] decrypted = _cipher.DecryptMessage(db, n);
|
---|
382 | for (int i = 0; i < n; i++)
|
---|
383 | {
|
---|
384 | buffer[offset + i] = decrypted[i];
|
---|
385 | }
|
---|
386 | return n;
|
---|
387 | }
|
---|
388 |
|
---|
389 | public override void Write(byte[] buffer, int offset, int count)
|
---|
390 | {
|
---|
391 | if (_mode == CryptoMode.Decrypt)
|
---|
392 | throw new NotSupportedException("This stream does not Decrypt via Write()");
|
---|
393 |
|
---|
394 | if (buffer == null)
|
---|
395 | throw new ArgumentNullException("buffer");
|
---|
396 |
|
---|
397 | // workitem 7696
|
---|
398 | if (count == 0) return;
|
---|
399 |
|
---|
400 | byte[] plaintext = null;
|
---|
401 | if (offset != 0)
|
---|
402 | {
|
---|
403 | plaintext = new byte[count];
|
---|
404 | for (int i = 0; i < count; i++)
|
---|
405 | {
|
---|
406 | plaintext[i] = buffer[offset + i];
|
---|
407 | }
|
---|
408 | }
|
---|
409 | else plaintext = buffer;
|
---|
410 |
|
---|
411 | byte[] encrypted = _cipher.EncryptMessage(plaintext, count);
|
---|
412 | _s.Write(encrypted, 0, encrypted.Length);
|
---|
413 | }
|
---|
414 |
|
---|
415 |
|
---|
416 | public override bool CanRead
|
---|
417 | {
|
---|
418 | get { return (_mode == CryptoMode.Decrypt); }
|
---|
419 | }
|
---|
420 | public override bool CanSeek
|
---|
421 | {
|
---|
422 | get { return false; }
|
---|
423 | }
|
---|
424 |
|
---|
425 | public override bool CanWrite
|
---|
426 | {
|
---|
427 | get { return (_mode == CryptoMode.Encrypt); }
|
---|
428 | }
|
---|
429 |
|
---|
430 | public override void Flush()
|
---|
431 | {
|
---|
432 | //throw new NotSupportedException();
|
---|
433 | }
|
---|
434 |
|
---|
435 | public override long Length
|
---|
436 | {
|
---|
437 | get { throw new NotSupportedException(); }
|
---|
438 | }
|
---|
439 |
|
---|
440 | public override long Position
|
---|
441 | {
|
---|
442 | get { throw new NotSupportedException(); }
|
---|
443 | set { throw new NotSupportedException(); }
|
---|
444 | }
|
---|
445 | public override long Seek(long offset, System.IO.SeekOrigin origin)
|
---|
446 | {
|
---|
447 | throw new NotSupportedException();
|
---|
448 | }
|
---|
449 |
|
---|
450 | public override void SetLength(long value)
|
---|
451 | {
|
---|
452 | throw new NotSupportedException();
|
---|
453 | }
|
---|
454 | }
|
---|
455 | }
|
---|