1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using HeuristicLab.Common;
|
---|
5 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
6 | using HeuristicLab.Problems.DataAnalysis;
|
---|
7 |
|
---|
8 | namespace HeuristicLab.Networks.IntegratedOptimization.SurrogateModeling {
|
---|
9 | public static class ExpectedImprovementHelpers {
|
---|
10 | public static IEnumerable<double> Evaluate(IEnumerable<RealVector> points, IRegressionSolution solution, bool calculateExpectedImprovement = true) {
|
---|
11 | var model = solution.Model;
|
---|
12 | var problemData = solution.ProblemData;
|
---|
13 | var dataset = problemData.Dataset;
|
---|
14 |
|
---|
15 | var modifiableDataset = new ModifiableDataset(problemData.AllowedInputVariables, problemData.AllowedInputVariables.Select(x => new List<double>()));
|
---|
16 | foreach (var point in points)
|
---|
17 | modifiableDataset.AddRow(point.Select(x => (object)x));
|
---|
18 |
|
---|
19 | var targets = model.GetEstimatedValues(modifiableDataset, Enumerable.Range(0, modifiableDataset.Rows))
|
---|
20 | .ToArray();
|
---|
21 |
|
---|
22 | if (calculateExpectedImprovement) {
|
---|
23 | var confModel = model as IConfidenceRegressionModel;
|
---|
24 | if (confModel != null) {
|
---|
25 | var minTarget = dataset.GetDoubleValues(problemData.TargetVariable).ToList().Min();
|
---|
26 | var uncertainties = confModel.GetEstimatedVariances(modifiableDataset, Enumerable.Range(0, modifiableDataset.Rows))
|
---|
27 | .Select(Math.Sqrt)
|
---|
28 | .ToArray();
|
---|
29 | for (int i = 0; i < modifiableDataset.Rows; i++)
|
---|
30 | targets[i] = CalculateExpectedImprovement(minTarget, targets[i], uncertainties[i]);
|
---|
31 | }
|
---|
32 | }
|
---|
33 |
|
---|
34 | return targets;
|
---|
35 | }
|
---|
36 |
|
---|
37 | private static double CalculateExpectedImprovement(double bestTarget, double estimatedTarget, double modelUncertainty) {
|
---|
38 | if (modelUncertainty.IsAlmost(0.0)) return 0.0;
|
---|
39 |
|
---|
40 | var delta = bestTarget - estimatedTarget;
|
---|
41 | var x = delta / modelUncertainty;
|
---|
42 | var expImp = delta * alglib.normaldistribution(x) + modelUncertainty * Math.Exp(-0.5 * x * x) / Math.Sqrt(2 * Math.PI);
|
---|
43 |
|
---|
44 | return double.IsNaN(expImp) || double.IsInfinity(expImp) ? 0.0 : expImp;
|
---|
45 | }
|
---|
46 | }
|
---|
47 | }
|
---|