1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using System.Threading;
|
---|
24 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
25 | using HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Core.Networks;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Networks.IntegratedOptimization.MachineLearning {
|
---|
35 | [Item("Feature Selection Network 2", "")]
|
---|
36 | [Creatable("Optimization Networks")]
|
---|
37 | [StorableClass]
|
---|
38 | public sealed class FeatureSelectionNetwork : Network {
|
---|
39 | [StorableConstructor]
|
---|
40 | private FeatureSelectionNetwork(bool deserializing) : base(deserializing) { }
|
---|
41 |
|
---|
42 | private FeatureSelectionNetwork(FeatureSelectionNetwork original, Cloner cloner)
|
---|
43 | : base(original, cloner) {
|
---|
44 | }
|
---|
45 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
46 | return new FeatureSelectionNetwork(this, cloner);
|
---|
47 | }
|
---|
48 |
|
---|
49 | [Storable]
|
---|
50 | private readonly OrchestratedAlgorithmNode FeatureSelectionAlgorithmNode;
|
---|
51 | [Storable]
|
---|
52 | private readonly OrchestratedAlgorithmNode RegressionAlgorithmNode;
|
---|
53 | [Storable]
|
---|
54 | private readonly FeatureSelectionOrchestrator Orchestrator;
|
---|
55 |
|
---|
56 | public FeatureSelectionNetwork()
|
---|
57 | : base() {
|
---|
58 | Orchestrator = new FeatureSelectionOrchestrator(this);
|
---|
59 | Nodes.Add(Orchestrator);
|
---|
60 |
|
---|
61 | var featureSelectionAlgorithm = CreateFeatureSelectionAlgorithm();
|
---|
62 | //TODO configure FeatureSelectionProblem
|
---|
63 |
|
---|
64 | FeatureSelectionAlgorithmNode = new OrchestratedAlgorithmNode("Feature Selection");
|
---|
65 | FeatureSelectionAlgorithmNode.Algorithm = featureSelectionAlgorithm;
|
---|
66 | FeatureSelectionAlgorithmNode.EvaluationPort.ConnectedPort = Orchestrator.FeatureSelectionEvaluationPort;
|
---|
67 | FeatureSelectionAlgorithmNode.EvaluationPort.CloneParametersFromPort(Orchestrator.FeatureSelectionEvaluationPort);
|
---|
68 | Nodes.Add(FeatureSelectionAlgorithmNode);
|
---|
69 |
|
---|
70 | var regressionAlgorithm = CreateRegressionAlgorithm();
|
---|
71 | RegressionAlgorithmNode = new OrchestratedAlgorithmNode("Regression");
|
---|
72 | RegressionAlgorithmNode.Algorithm = regressionAlgorithm;
|
---|
73 | Orchestrator.RegressionOrchestrationPort.ConnectedPort = RegressionAlgorithmNode.OrchestrationPort;
|
---|
74 | RegressionAlgorithmNode.OrchestrationPort.CloneParametersFromPort(Orchestrator.RegressionOrchestrationPort);
|
---|
75 | Nodes.Add(RegressionAlgorithmNode);
|
---|
76 | }
|
---|
77 |
|
---|
78 | private IAlgorithm CreateFeatureSelectionAlgorithm() {
|
---|
79 | var problem = new OrchestratedBinaryProblem(Orchestrator, 0, false);
|
---|
80 | problem.Encoding.SolutionCreator = new RandomBinaryVectorCreator() { TrueProbability = new DoubleValue(0.2) };
|
---|
81 |
|
---|
82 | var osga = new OffspringSelectionGeneticAlgorithm();
|
---|
83 | osga.Problem = problem;
|
---|
84 | osga.PopulationSize.Value = 100;
|
---|
85 | osga.ComparisonFactorLowerBound.Value = 1;
|
---|
86 | osga.ComparisonFactorUpperBound.Value = 1;
|
---|
87 | osga.SuccessRatio.Value = 1.0;
|
---|
88 | osga.MutationProbability.Value = 0.15;
|
---|
89 | osga.Mutator = osga.MutatorParameter.ValidValues.OfType<SomePositionsBitflipManipulator>().First();
|
---|
90 | return osga;
|
---|
91 | }
|
---|
92 |
|
---|
93 | private static IAlgorithm CreateRegressionAlgorithm() {
|
---|
94 | var linreg = new LinearRegression();
|
---|
95 | return linreg;
|
---|
96 | }
|
---|
97 |
|
---|
98 |
|
---|
99 | public void Prepare() { Prepare(false); }
|
---|
100 | public void Prepare(bool clearRuns) {
|
---|
101 | var msg = FeatureSelectionAlgorithmNode.OrchestrationPort.PrepareMessage();
|
---|
102 | if (clearRuns)
|
---|
103 | msg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Prepare | OrchestrationMessage.ClearRuns);
|
---|
104 | else
|
---|
105 | msg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Prepare);
|
---|
106 | FeatureSelectionAlgorithmNode.OrchestrationPort.ReceiveMessage(msg, new CancellationToken());
|
---|
107 | }
|
---|
108 |
|
---|
109 | public void Start() {
|
---|
110 | var problem = (OrchestratedBinaryProblem)FeatureSelectionAlgorithmNode.Algorithm.Problem;
|
---|
111 | problem.Encoding.Length = Orchestrator.RegressionProblemData.AllowedInputVariables.Count();
|
---|
112 |
|
---|
113 | var msg = FeatureSelectionAlgorithmNode.OrchestrationPort.PrepareMessage();
|
---|
114 | msg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Start);
|
---|
115 | FeatureSelectionAlgorithmNode.OrchestrationPort.ReceiveMessage(msg, new CancellationToken());
|
---|
116 | }
|
---|
117 | public void Pause() {
|
---|
118 | var msg = FeatureSelectionAlgorithmNode.OrchestrationPort.PrepareMessage();
|
---|
119 | msg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Pause);
|
---|
120 | FeatureSelectionAlgorithmNode.OrchestrationPort.ReceiveMessage(msg, new CancellationToken());
|
---|
121 | }
|
---|
122 | public void Stop() {
|
---|
123 | var msg = FeatureSelectionAlgorithmNode.OrchestrationPort.PrepareMessage();
|
---|
124 | msg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Stop);
|
---|
125 | FeatureSelectionAlgorithmNode.OrchestrationPort.ReceiveMessage(msg, new CancellationToken());
|
---|
126 | RegressionAlgorithmNode.Algorithm.Runs.Clear();
|
---|
127 | }
|
---|
128 | }
|
---|
129 | }
|
---|