1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
31 | [Item("Penalty Score Evaluator", "Calculates the penalty score of a symbolic classification solution.")]
|
---|
32 | [StorableClass]
|
---|
33 | public class SymbolicClassificationSingleObjectivePenaltyScoreEvaluator : SymbolicClassificationSingleObjectiveEvaluator, ISymbolicClassificationModelCreatorOperator {
|
---|
34 | private const string ModelCreatorParameterName = "ModelCreator";
|
---|
35 | public override bool Maximization { get { return false; } }
|
---|
36 |
|
---|
37 | public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter {
|
---|
38 | get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; }
|
---|
39 | }
|
---|
40 | ILookupParameter<ISymbolicClassificationModelCreator> ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter {
|
---|
41 | get { return ModelCreatorParameter; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | [StorableConstructor]
|
---|
45 | protected SymbolicClassificationSingleObjectivePenaltyScoreEvaluator(bool deserializing) : base(deserializing) { }
|
---|
46 | protected SymbolicClassificationSingleObjectivePenaltyScoreEvaluator(SymbolicClassificationSingleObjectivePenaltyScoreEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
47 | public SymbolicClassificationSingleObjectivePenaltyScoreEvaluator()
|
---|
48 | : base() {
|
---|
49 | Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
|
---|
50 | }
|
---|
51 |
|
---|
52 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
53 | return new SymbolicClassificationSingleObjectivePenaltyScoreEvaluator(this, cloner);
|
---|
54 | }
|
---|
55 |
|
---|
56 | [StorableHook(HookType.AfterDeserialization)]
|
---|
57 | private void AfterDeserialization() {
|
---|
58 | // BackwardsCompatibility3.4
|
---|
59 | #region Backwards compatible code, remove with 3.5
|
---|
60 | if (!Parameters.ContainsKey(ModelCreatorParameterName))
|
---|
61 | Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
|
---|
62 | #endregion
|
---|
63 | }
|
---|
64 |
|
---|
65 |
|
---|
66 | public override IOperation Apply() {
|
---|
67 | double quality = Evaluate(ExecutionContext, SymbolicExpressionTreeParameter.ActualValue, ProblemDataParameter.ActualValue, GenerateRowsToEvaluate());
|
---|
68 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
69 | return base.Apply();
|
---|
70 | }
|
---|
71 |
|
---|
72 | public static double Calculate(IClassificationModel model, IClassificationProblemData problemData, IEnumerable<int> rows) {
|
---|
73 | var estimations = model.GetEstimatedClassValues(problemData.Dataset, rows).GetEnumerator();
|
---|
74 | if (!estimations.MoveNext()) return double.NaN;
|
---|
75 |
|
---|
76 | var penalty = 0.0;
|
---|
77 | var count = 0;
|
---|
78 | foreach (var r in rows) {
|
---|
79 | var actualClass = problemData.Dataset.GetDoubleValue(problemData.TargetVariable, r);
|
---|
80 | penalty += problemData.GetClassificationPenalty(actualClass, estimations.Current);
|
---|
81 | estimations.MoveNext();
|
---|
82 | count++;
|
---|
83 | }
|
---|
84 | return penalty / count;
|
---|
85 | }
|
---|
86 |
|
---|
87 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IClassificationProblemData problemData, IEnumerable<int> rows) {
|
---|
88 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
89 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
90 | ModelCreatorParameter.ExecutionContext = context;
|
---|
91 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
92 |
|
---|
93 | var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel(tree, SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
|
---|
94 | if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(problemData);
|
---|
95 | model.RecalculateModelParameters(problemData, rows);
|
---|
96 | double penalty = Calculate(model, problemData, rows);
|
---|
97 |
|
---|
98 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
99 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
100 | ModelCreatorParameter.ExecutionContext = null;
|
---|
101 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
102 |
|
---|
103 | return penalty;
|
---|
104 | }
|
---|
105 | }
|
---|
106 | }
|
---|