Free cookie consent management tool by TermsFeed Policy Generator

source: branches/1772_HeuristicLab.EvolutionTracking/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/TreeMatching/SymbolicExpressionTreeBottomUpSimilarityCalculator.cs @ 17456

Last change on this file since 17456 was 17434, checked in by bburlacu, 5 years ago

#1772: Merge trunk changes and fix all errors and compilation warnings.

File size: 10.1 KB
Line 
1#region License Information
2
3/* HeuristicLab
4 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
5 *
6 * This file is part of HeuristicLab.
7 *
8 * HeuristicLab is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * HeuristicLab is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22#endregion License Information
23
24using System;
25using System.Collections.Generic;
26using System.Globalization;
27using System.Linq;
28using HeuristicLab.Common;
29using HeuristicLab.Core;
30using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
31using HeuristicLab.Optimization.Operators;
32using HEAL.Attic;
33
34using NodeMap = System.Collections.Generic.Dictionary<HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.ISymbolicExpressionTreeNode, HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.ISymbolicExpressionTreeNode>;
35
36namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
37  [StorableType("63ACB7A4-137F-468F-BE42-A4CA6B62C63B")]
38  [Item("SymbolicExpressionTreeBottomUpSimilarityCalculator", "A similarity calculator which uses the tree bottom-up distance as a similarity metric.")]
39  public class SymbolicExpressionTreeBottomUpSimilarityCalculator : SolutionSimilarityCalculator {
40    private readonly HashSet<string> commutativeSymbols = new HashSet<string> { "Addition", "Multiplication", "Average", "And", "Or", "Xor" };
41
42    public SymbolicExpressionTreeBottomUpSimilarityCalculator() {
43    }
44
45    protected override bool IsCommutative { get { return true; } }
46
47    public bool MatchConstantValues { get; set; }
48    public bool MatchVariableWeights { get; set; }
49
50    [StorableConstructor]
51    protected SymbolicExpressionTreeBottomUpSimilarityCalculator(StorableConstructorFlag _) : base(_) {
52    }
53
54    protected SymbolicExpressionTreeBottomUpSimilarityCalculator(SymbolicExpressionTreeBottomUpSimilarityCalculator original, Cloner cloner)
55      : base(original, cloner) {
56    }
57
58    public override IDeepCloneable Clone(Cloner cloner) {
59      return new SymbolicExpressionTreeBottomUpSimilarityCalculator(this, cloner);
60    }
61
62    #region static methods
63    private static ISymbolicExpressionTreeNode ActualRoot(ISymbolicExpressionTree tree) {
64      return tree.Root.GetSubtree(0).GetSubtree(0);
65    }
66
67    public static double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, bool strict = false) {
68      return CalculateSimilarity(ActualRoot(t1), ActualRoot(t2), strict);
69    }
70
71    public static double CalculateSimilarity(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2, bool strict = false) {
72      var calculator = new SymbolicExpressionTreeBottomUpSimilarityCalculator { MatchConstantValues = strict, MatchVariableWeights = strict };
73      return CalculateSimilarity(n1, n2, strict);
74    }
75
76    public static Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, bool strict = false) {
77      return ComputeBottomUpMapping(ActualRoot(t1), ActualRoot(t2), strict);
78    }
79
80    public static Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2, bool strict = false) {
81      var calculator = new SymbolicExpressionTreeBottomUpSimilarityCalculator { MatchConstantValues = strict, MatchVariableWeights = strict };
82      return calculator.ComputeBottomUpMapping(n1, n2);
83    }
84    #endregion
85
86    public double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2) {
87      return CalculateSimilarity(t1, t2, out Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> map);
88    }
89
90    public double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, out NodeMap map) {
91      if (t1 == t2) {
92        map = null;
93        return 1;
94      }
95      map = ComputeBottomUpMapping(t1, t2);
96      return 2.0 * map.Count / (t1.Length + t2.Length - 4); // -4 for skipping root and start symbols in the two trees
97    }
98
99    public override double CalculateSolutionSimilarity(IScope leftSolution, IScope rightSolution) {
100      if (leftSolution == rightSolution)
101        return 1.0;
102
103      var t1 = leftSolution.Variables[SolutionVariableName].Value as ISymbolicExpressionTree;
104      var t2 = rightSolution.Variables[SolutionVariableName].Value as ISymbolicExpressionTree;
105
106      if (t1 == null || t2 == null)
107        throw new ArgumentException("Cannot calculate similarity when one of the arguments is null.");
108
109      var similarity = CalculateSimilarity(t1, t2);
110      if (similarity > 1.0)
111        throw new Exception("Similarity value cannot be greater than 1");
112
113      return similarity;
114    }
115
116    public Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2) {
117      return ComputeBottomUpMapping(ActualRoot(t1), ActualRoot(t2));
118    }
119
120    public Dictionary<ISymbolicExpressionTreeNode, ISymbolicExpressionTreeNode> ComputeBottomUpMapping(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2) {
121      var compactedGraph = Compact(n1, n2);
122
123      IEnumerable<ISymbolicExpressionTreeNode> Subtrees(ISymbolicExpressionTreeNode node, bool commutative) {
124        var subtrees = node.IterateNodesPrefix();
125        return commutative ? subtrees.OrderBy(x => compactedGraph[x].Hash) : subtrees;
126      }
127
128      var nodes1 = n1.IterateNodesPostfix().OrderByDescending(x => x.GetLength()); // by descending length so that largest subtrees are mapped first
129      var nodes2 = (List<ISymbolicExpressionTreeNode>)n2.IterateNodesPostfix();
130
131      var forward = new NodeMap();
132      var reverse = new NodeMap();
133
134      foreach (ISymbolicExpressionTreeNode v in nodes1) {
135        if (forward.ContainsKey(v))
136          continue;
137
138        var kv = compactedGraph[v];
139        var commutative = v.SubtreeCount > 1 && commutativeSymbols.Contains(kv.Label);
140
141        foreach (ISymbolicExpressionTreeNode w in nodes2) {
142          if (w.GetLength() != kv.Length || w.GetDepth() != kv.Depth || reverse.ContainsKey(w) || compactedGraph[w] != kv)
143            continue;
144
145          // map one whole subtree to the other
146          foreach (var t in Subtrees(v, commutative).Zip(Subtrees(w, commutative), Tuple.Create)) {
147            forward[t.Item1] = t.Item2;
148            reverse[t.Item2] = t.Item1;
149          }
150
151          break;
152        }
153      }
154
155      return forward;
156    }
157
158    /// <summary>
159    /// Creates a compact representation of the two trees as a directed acyclic graph
160    /// </summary>
161    /// <param name="n1">The root of the first tree</param>
162    /// <param name="n2">The root of the second tree</param>
163    /// <returns>The compacted DAG representing the two trees</returns>
164    private Dictionary<ISymbolicExpressionTreeNode, GraphNode> Compact(ISymbolicExpressionTreeNode n1, ISymbolicExpressionTreeNode n2) {
165      var nodeMap = new Dictionary<ISymbolicExpressionTreeNode, GraphNode>(); // K
166      var labelMap = new Dictionary<string, GraphNode>(); // L
167
168      var nodes = n1.IterateNodesPostfix().Concat(n2.IterateNodesPostfix()); // the disjoint union F
169      var graph = new List<GraphNode>();
170
171      IEnumerable<GraphNode> Subtrees(GraphNode g, bool commutative) {
172        var subtrees = g.SymbolicExpressionTreeNode.Subtrees.Select(x => nodeMap[x]);
173        return commutative ? subtrees.OrderBy(x => x.Hash) : subtrees;
174      }
175
176      foreach (var node in nodes) {
177        var label = GetLabel(node);
178
179        if (node.SubtreeCount == 0) {
180          if (!labelMap.ContainsKey(label)) {
181            labelMap[label] = new GraphNode(node, label);
182          }
183          nodeMap[node] = labelMap[label];
184        } else {
185          var v = new GraphNode(node, label);
186          bool found = false;
187          var commutative = node.SubtreeCount > 1 && commutativeSymbols.Contains(label);
188
189          var vv = Subtrees(v, commutative);
190
191          foreach (var w in graph) {
192            if (v.Depth != w.Depth || v.SubtreeCount != w.SubtreeCount || v.Length != w.Length || v.Label != w.Label) {
193              continue;
194            }
195
196            var ww = Subtrees(w, commutative);
197            found = vv.SequenceEqual(ww);
198
199            if (found) {
200              nodeMap[node] = w;
201              break;
202            }
203          }
204          if (!found) {
205            nodeMap[node] = v;
206            graph.Add(v);
207          }
208        }
209      }
210      return nodeMap;
211    }
212
213    private string GetLabel(ISymbolicExpressionTreeNode node) {
214      if (node.SubtreeCount > 0)
215        return node.Symbol.Name;
216
217      if (node is ConstantTreeNode constant)
218        return MatchConstantValues ? constant.Value.ToString(CultureInfo.InvariantCulture) : constant.Symbol.Name;
219
220      if (node is VariableTreeNode variable)
221        return MatchVariableWeights ? variable.Weight + variable.VariableName : variable.VariableName;
222
223      return node.ToString();
224    }
225
226    private class GraphNode {
227      private GraphNode() { }
228
229      public GraphNode(ISymbolicExpressionTreeNode node, string label) {
230        SymbolicExpressionTreeNode = node;
231        Label = label;
232        Hash = GetHashCode();
233        Depth = node.GetDepth();
234        Length = node.GetLength();
235      }
236
237      public int Hash { get; }
238      public ISymbolicExpressionTreeNode SymbolicExpressionTreeNode { get; }
239      public string Label { get; }
240      public int Depth { get; }
241      public int SubtreeCount { get { return SymbolicExpressionTreeNode.SubtreeCount; } }
242      public int Length { get; }
243    }
244  }
245}
Note: See TracBrowser for help on using the repository browser.