1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Concurrent;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Linq;
|
---|
26 | using System.Threading.Tasks;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
31 | using HeuristicLab.EvolutionTracking;
|
---|
32 | using HeuristicLab.Optimization;
|
---|
33 | using HeuristicLab.Parameters;
|
---|
34 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
35 | using HeuristicLab.Random;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
38 | [Item("SchemaEvaluator", "An operator that builds schemas based on the heredity relationship in the genealogy graph.")]
|
---|
39 | [StorableClass]
|
---|
40 | public class SchemaEvaluator : EvolutionTrackingOperator<ISymbolicExpressionTree> {
|
---|
41 | #region parameter names
|
---|
42 | private const string MinimumSchemaFrequencyParameterName = "MinimumSchemaFrequency";
|
---|
43 | private const string MinimumPhenotypicSimilarityParameterName = "MinimumPhenotypicSimilarity";
|
---|
44 | private const string MutationRateParameterName = "MutationRate";
|
---|
45 | private const string SchemaParameterName = "Schema";
|
---|
46 | private const string PopulationSizeParameterName = "PopulationSize";
|
---|
47 | private const string RandomParameterName = "Random";
|
---|
48 | private const string EvaluatorParameterName = "Evaluator";
|
---|
49 | private const string ProblemDataParameterName = "ProblemData";
|
---|
50 | private const string InterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
51 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
52 | private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
|
---|
53 | private const string MutatorParameterName = "Mutator";
|
---|
54 | private const string CrossoverParameterName = "Crossover";
|
---|
55 | private const string NumberOfChangedTreesParameterName = "NumberOfChangedTrees";
|
---|
56 | private const string ExecuteInParallelParameterName = "ExecuteInParallel";
|
---|
57 | private const string MaxDegreeOfParalellismParameterName = "MaxDegreeOfParallelism";
|
---|
58 | private const string ExclusiveMatchingParameterName = "ExclusiveMatching";
|
---|
59 | private const string UseAdaptiveMutationRateParameterName = "UseAdaptiveMutationRate";
|
---|
60 | private const string StrictSchemaMatchingParameterName = "StrictSchemaMatching";
|
---|
61 | #endregion
|
---|
62 |
|
---|
63 | #region parameters
|
---|
64 | public ILookupParameter<BoolValue> UseAdaptiveMutationRateParameter {
|
---|
65 | get { return (ILookupParameter<BoolValue>)Parameters[UseAdaptiveMutationRateParameterName]; }
|
---|
66 | }
|
---|
67 | public ILookupParameter<BoolValue> ExclusiveMatchingParameter {
|
---|
68 | get { return (ILookupParameter<BoolValue>)Parameters[ExclusiveMatchingParameterName]; }
|
---|
69 | }
|
---|
70 | public ILookupParameter<BoolValue> ExecuteInParallelParameter {
|
---|
71 | get { return (ILookupParameter<BoolValue>)Parameters[ExecuteInParallelParameterName]; }
|
---|
72 | }
|
---|
73 | public ILookupParameter<IntValue> MaxDegreeOfParallelismParameter {
|
---|
74 | get { return (ILookupParameter<IntValue>)Parameters[MaxDegreeOfParalellismParameterName]; }
|
---|
75 | }
|
---|
76 | public ILookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<IRegressionProblemData>> EvaluatorParameter {
|
---|
77 | get { return (ILookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<IRegressionProblemData>>)Parameters[EvaluatorParameterName]; }
|
---|
78 | }
|
---|
79 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
80 | get { return (ILookupParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
81 | }
|
---|
82 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> InterpreterParameter {
|
---|
83 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[InterpreterParameterName]; }
|
---|
84 | }
|
---|
85 | public ILookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
86 | get { return (ILookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
87 | }
|
---|
88 | public ILookupParameter<BoolValue> ApplyLinearScalingParameter {
|
---|
89 | get { return (ILookupParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
|
---|
90 | }
|
---|
91 | public ILookupParameter<ISymbolicExpressionTreeCrossover> CrossoverParameter {
|
---|
92 | get { return (ILookupParameter<ISymbolicExpressionTreeCrossover>)Parameters[CrossoverParameterName]; }
|
---|
93 | }
|
---|
94 | public ILookupParameter<IRandom> RandomParameter {
|
---|
95 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
96 | }
|
---|
97 | public ILookupParameter<IntValue> PopulationSizeParameter {
|
---|
98 | get { return (ILookupParameter<IntValue>)Parameters[PopulationSizeParameterName]; }
|
---|
99 | }
|
---|
100 | public ILookupParameter<ISymbolicExpressionTree> SchemaParameter {
|
---|
101 | get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters[SchemaParameterName]; }
|
---|
102 | }
|
---|
103 | public ILookupParameter<PercentValue> MinimumSchemaFrequencyParameter {
|
---|
104 | get { return (ILookupParameter<PercentValue>)Parameters[MinimumSchemaFrequencyParameterName]; }
|
---|
105 | }
|
---|
106 | public ILookupParameter<PercentValue> MutationRateParameter {
|
---|
107 | get { return (ILookupParameter<PercentValue>)Parameters[MutationRateParameterName]; }
|
---|
108 | }
|
---|
109 | public ILookupParameter<PercentValue> MinimumPhenotypicSimilarityParameter {
|
---|
110 | get { return (ILookupParameter<PercentValue>)Parameters[MinimumPhenotypicSimilarityParameterName]; }
|
---|
111 | }
|
---|
112 | public LookupParameter<IntValue> NumberOfChangedTreesParameter {
|
---|
113 | get { return (LookupParameter<IntValue>)Parameters[NumberOfChangedTreesParameterName]; }
|
---|
114 | }
|
---|
115 | public LookupParameter<BoolValue> StrictSchemaMatchingParameter {
|
---|
116 | get { return (LookupParameter<BoolValue>)Parameters[StrictSchemaMatchingParameterName]; }
|
---|
117 | }
|
---|
118 | #endregion
|
---|
119 |
|
---|
120 | #region parameter properties
|
---|
121 | public PercentValue MinimumSchemaFrequency { get { return MinimumSchemaFrequencyParameter.ActualValue; } }
|
---|
122 | public PercentValue MutationRate { get { return MutationRateParameter.ActualValue; } }
|
---|
123 | public PercentValue MinimumPhenotypicSimilarity { get { return MinimumPhenotypicSimilarityParameter.ActualValue; } }
|
---|
124 | public IntValue NumberOfChangedTrees { get { return NumberOfChangedTreesParameter.ActualValue; } }
|
---|
125 | #endregion
|
---|
126 |
|
---|
127 | private QueryMatch qm;
|
---|
128 |
|
---|
129 | [Storable]
|
---|
130 | private SymbolicExpressionTreePhenotypicSimilarityCalculator calculator;
|
---|
131 |
|
---|
132 | [Storable]
|
---|
133 | public string MutationRateUpdateRule { get; set; }
|
---|
134 |
|
---|
135 | [Storable]
|
---|
136 | private ISymbolicExpressionTreeNodeEqualityComparer comparer;
|
---|
137 |
|
---|
138 | [Storable]
|
---|
139 | public ISymbolicExpressionTree Schema { get; set; }
|
---|
140 |
|
---|
141 | [Storable]
|
---|
142 | private readonly UpdateQualityOperator updateQualityOperator;
|
---|
143 |
|
---|
144 | [Storable]
|
---|
145 | public ISymbolicExpressionTreeManipulator SchemaManipulator { get; set; }
|
---|
146 |
|
---|
147 | [StorableHook(HookType.AfterDeserialization)]
|
---|
148 | private void AfterDeserialization() {
|
---|
149 | if (!Parameters.ContainsKey(StrictSchemaMatchingParameterName))
|
---|
150 | Parameters.Add(new LookupParameter<BoolValue>(StrictSchemaMatchingParameterName));
|
---|
151 |
|
---|
152 | if (calculator == null)
|
---|
153 | calculator = new SymbolicExpressionTreePhenotypicSimilarityCalculator();
|
---|
154 |
|
---|
155 | if (comparer == null)
|
---|
156 | comparer = new SymbolicExpressionTreeNodeEqualityComparer { MatchVariableNames = true, MatchVariableWeights = true, MatchConstantValues = false };
|
---|
157 |
|
---|
158 | qm = new QueryMatch(comparer) { MatchParents = true };
|
---|
159 | }
|
---|
160 |
|
---|
161 | public SchemaEvaluator() {
|
---|
162 | calculator = new SymbolicExpressionTreePhenotypicSimilarityCalculator();
|
---|
163 | comparer = new SymbolicExpressionTreeNodeEqualityComparer { MatchVariableNames = true, MatchVariableWeights = true, MatchConstantValues = false };
|
---|
164 | qm = new QueryMatch(comparer) { MatchParents = true };
|
---|
165 | updateQualityOperator = new UpdateQualityOperator();
|
---|
166 | #region add parameters
|
---|
167 | Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SchemaParameterName, "The current schema to be evaluated"));
|
---|
168 | Parameters.Add(new LookupParameter<PercentValue>(MinimumSchemaFrequencyParameterName));
|
---|
169 | Parameters.Add(new LookupParameter<PercentValue>(MutationRateParameterName));
|
---|
170 | Parameters.Add(new LookupParameter<PercentValue>(MinimumPhenotypicSimilarityParameterName));
|
---|
171 | Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(PopulationSizeParameterName));
|
---|
172 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName));
|
---|
173 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<IRegressionProblemData>>(EvaluatorParameterName));
|
---|
174 | Parameters.Add(new LookupParameter<IRegressionProblemData>(ProblemDataParameterName));
|
---|
175 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(InterpreterParameterName));
|
---|
176 | Parameters.Add(new LookupParameter<DoubleLimit>(EstimationLimitsParameterName));
|
---|
177 | Parameters.Add(new LookupParameter<BoolValue>(ApplyLinearScalingParameterName));
|
---|
178 | Parameters.Add(new LookupParameter<BoolValue>(StrictSchemaMatchingParameterName));
|
---|
179 | Parameters.Add(new LookupParameter<ISymbolicExpressionTreeManipulator>(MutatorParameterName));
|
---|
180 | Parameters.Add(new LookupParameter<ISymbolicExpressionTreeCrossover>(CrossoverParameterName));
|
---|
181 | Parameters.Add(new LookupParameter<IntValue>(NumberOfChangedTreesParameterName));
|
---|
182 | Parameters.Add(new LookupParameter<BoolValue>(ExecuteInParallelParameterName));
|
---|
183 | Parameters.Add(new LookupParameter<IntValue>(MaxDegreeOfParalellismParameterName));
|
---|
184 | Parameters.Add(new LookupParameter<BoolValue>(ExclusiveMatchingParameterName));
|
---|
185 | Parameters.Add(new LookupParameter<BoolValue>(UseAdaptiveMutationRateParameterName));
|
---|
186 | #endregion
|
---|
187 | }
|
---|
188 |
|
---|
189 | [StorableConstructor]
|
---|
190 | protected SchemaEvaluator(bool deserializing) : base(deserializing) { }
|
---|
191 |
|
---|
192 | protected SchemaEvaluator(SchemaEvaluator original, Cloner cloner) : base(original, cloner) {
|
---|
193 | calculator = cloner.Clone(original.calculator);
|
---|
194 | comparer = cloner.Clone(original.comparer);
|
---|
195 | qm = new QueryMatch(comparer) { MatchParents = true };
|
---|
196 | updateQualityOperator = new UpdateQualityOperator();
|
---|
197 | Schema = original.Schema;
|
---|
198 | }
|
---|
199 |
|
---|
200 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
201 | return new SchemaEvaluator(this, cloner);
|
---|
202 | }
|
---|
203 |
|
---|
204 | public override IOperation Apply() {
|
---|
205 | var strictSchemaMatching = StrictSchemaMatchingParameter.ActualValue.Value;
|
---|
206 | if (strictSchemaMatching) {
|
---|
207 | comparer.MatchVariableWeights = true;
|
---|
208 | comparer.MatchConstantValues = true;
|
---|
209 | } else {
|
---|
210 | comparer.MatchVariableWeights = false;
|
---|
211 | comparer.MatchConstantValues = false;
|
---|
212 | }
|
---|
213 |
|
---|
214 | var individuals = ExecutionContext.Scope.SubScopes; // the scopes represent the individuals
|
---|
215 | var trees = new ISymbolicExpressionTree[individuals.Count];
|
---|
216 | var qualities = new double[individuals.Count];
|
---|
217 |
|
---|
218 | for (int i = 0; i < individuals.Count; ++i) {
|
---|
219 | trees[i] = (ISymbolicExpressionTree)individuals[i].Variables["SymbolicExpressionTree"].Value;
|
---|
220 | qualities[i] = ((DoubleValue)individuals[i].Variables["Quality"].Value).Value;
|
---|
221 | }
|
---|
222 |
|
---|
223 | var random = RandomParameter.ActualValue;
|
---|
224 | var sRoot = Schema.Root.GetSubtree(0).GetSubtree(0);
|
---|
225 |
|
---|
226 | // first apply the length and root equality checks in order to filter the individuals
|
---|
227 | var exclusiveMatching = ExclusiveMatchingParameter.ActualValue.Value;
|
---|
228 | var filtered = new List<int>();
|
---|
229 |
|
---|
230 | for (int i = 0; i < trees.Length; ++i) {
|
---|
231 | if (exclusiveMatching && individuals[i].Variables.ContainsKey("AlreadyMatched")) continue;
|
---|
232 | var t = trees[i];
|
---|
233 | var tRoot = t.Root.GetSubtree(0).GetSubtree(0);
|
---|
234 | if (t.Length < Schema.Length || !qm.EqualityComparer.Equals(tRoot, sRoot)) continue;
|
---|
235 | filtered.Add(i);
|
---|
236 | }
|
---|
237 |
|
---|
238 | // if we don't have enough filtered individuals, then we are done
|
---|
239 | // if the schema exceeds the minimum frequency, it gets processed further
|
---|
240 | int countThreshold = (int)Math.Max(2, Math.Round(MinimumSchemaFrequency.Value * individuals.Count));
|
---|
241 | if (filtered.Count < countThreshold) {
|
---|
242 | return base.Apply();
|
---|
243 | }
|
---|
244 |
|
---|
245 | // check if the filtered individuals match the schema
|
---|
246 | var matching = new List<int>();
|
---|
247 | var sNodes = QueryMatch.InitializePostOrder(sRoot);
|
---|
248 |
|
---|
249 | bool executeInParallel = ExecuteInParallelParameter.ActualValue.Value;
|
---|
250 | int maxDegreeOfParallelism = MaxDegreeOfParallelismParameter.ActualValue.Value;
|
---|
251 |
|
---|
252 | if (executeInParallel) {
|
---|
253 | var partitioner = Partitioner.Create(0, filtered.Count);
|
---|
254 | var po = new ParallelOptions { MaxDegreeOfParallelism = maxDegreeOfParallelism };
|
---|
255 |
|
---|
256 | Parallel.ForEach(partitioner, po, (range, loop) => {
|
---|
257 | var partial = new List<int>();
|
---|
258 | for (int i = range.Item1; i < range.Item2; ++i) {
|
---|
259 | var idx = filtered[i];
|
---|
260 | var tRoot = trees[idx].Root.GetSubtree(0).GetSubtree(0);
|
---|
261 | var tNodes = QueryMatch.InitializePostOrder(tRoot);
|
---|
262 |
|
---|
263 | if (qm.Match(tNodes, sNodes)) { partial.Add(idx); }
|
---|
264 | }
|
---|
265 | lock (matching) { matching.AddRange(partial); }
|
---|
266 | });
|
---|
267 | } else {
|
---|
268 | for (int i = 0; i < filtered.Count; ++i) {
|
---|
269 | var index = filtered[i];
|
---|
270 | var tRoot = trees[index].Root.GetSubtree(0).GetSubtree(0);
|
---|
271 | var tNodes = QueryMatch.InitializePostOrder(tRoot);
|
---|
272 | if (qm.Match(tNodes, sNodes)) {
|
---|
273 | matching.Add(index);
|
---|
274 | }
|
---|
275 | }
|
---|
276 | }
|
---|
277 | if (matching.Count < countThreshold) {
|
---|
278 | return base.Apply();
|
---|
279 | }
|
---|
280 |
|
---|
281 | matching.Sort((a, b) => qualities[a].CompareTo(qualities[b])); // sort by ascending quality
|
---|
282 | var matchingIndividuals = matching.Select(x => individuals[x]).ToArray(); // fittest individual will be last in the array
|
---|
283 | var similarity = CalculateSimilarity(matchingIndividuals, calculator, executeInParallel, maxDegreeOfParallelism);
|
---|
284 | if (similarity < MinimumPhenotypicSimilarity.Value) {
|
---|
285 | return base.Apply();
|
---|
286 | }
|
---|
287 |
|
---|
288 | double mutationRate;
|
---|
289 | var useAdaptiveMutationRate = UseAdaptiveMutationRateParameter.ActualValue.Value;
|
---|
290 |
|
---|
291 | if (useAdaptiveMutationRate) {
|
---|
292 | var r = (double)matchingIndividuals.Length / individuals.Count;
|
---|
293 | mutationRate = CalculateMutationRate(r);
|
---|
294 | } else {
|
---|
295 | mutationRate = MutationRate.Value;
|
---|
296 | }
|
---|
297 |
|
---|
298 | var mutations = new OperationCollection { Parallel = false }; // cannot be parallel due to the before/after operators which insert vertices in the genealogy graph
|
---|
299 | var updates = new OperationCollection { Parallel = true }; // evaluation should be done in parallel when possible
|
---|
300 |
|
---|
301 | // use length - 1 because we don't want to mutate the best individual in each schema group (which could also be the overall elite)
|
---|
302 | for (int i = 0; i < matchingIndividuals.Length - 1; ++i) {
|
---|
303 | if (random.NextDouble() > mutationRate) continue;
|
---|
304 |
|
---|
305 | var ind = matchingIndividuals[i];
|
---|
306 |
|
---|
307 | var mutate = ExecutionContext.CreateChildOperation(SchemaManipulator, ind);
|
---|
308 | var update = ExecutionContext.CreateChildOperation(updateQualityOperator, ind);
|
---|
309 |
|
---|
310 | mutations.Add(mutate);
|
---|
311 | updates.Add(update);
|
---|
312 |
|
---|
313 | if (exclusiveMatching)
|
---|
314 | ind.Variables.Add(new Core.Variable("AlreadyMatched"));
|
---|
315 | }
|
---|
316 | NumberOfChangedTrees.Value += mutations.Count;
|
---|
317 |
|
---|
318 | return new OperationCollection(mutations, updates, base.Apply());
|
---|
319 | }
|
---|
320 |
|
---|
321 | private double CalculateMutationRate(double r) {
|
---|
322 | switch (MutationRateUpdateRule) {
|
---|
323 | case "f(x) = x": {
|
---|
324 | return r;
|
---|
325 | }
|
---|
326 | case "f(x) = tanh(x)": {
|
---|
327 | return Math.Tanh(r);
|
---|
328 | }
|
---|
329 | case "f(x) = tanh(2x)": {
|
---|
330 | return Math.Tanh(2 * r);
|
---|
331 | }
|
---|
332 | case "f(x) = tanh(3x)": {
|
---|
333 | return Math.Tanh(3 * r);
|
---|
334 | }
|
---|
335 | case "f(x) = tanh(4x)": {
|
---|
336 | return Math.Tanh(4 * r);
|
---|
337 | }
|
---|
338 | case "f(x) = 1-sqrt(1-x)": {
|
---|
339 | return 1 - Math.Sqrt(1 - r);
|
---|
340 | }
|
---|
341 | default:
|
---|
342 | throw new ArgumentException("Unknown replacement rule");
|
---|
343 | }
|
---|
344 | }
|
---|
345 |
|
---|
346 | public static double CalculateSimilarity(IScope[] individuals, ISolutionSimilarityCalculator calculator, bool parallel = false, int nThreads = -1) {
|
---|
347 | if (individuals.Length < 2)
|
---|
348 | return double.NaN;
|
---|
349 |
|
---|
350 | double similarity = 0;
|
---|
351 | int count = individuals.Length;
|
---|
352 | int n = count * (count - 1) / 2;
|
---|
353 |
|
---|
354 | if (parallel) {
|
---|
355 | var ii = new int[n];
|
---|
356 | var jj = new int[n];
|
---|
357 | int k = 0;
|
---|
358 | for (int i = 0; i < count - 1; ++i)
|
---|
359 | for (int j = i + 1; j < count; ++j) {
|
---|
360 | ii[k] = i;
|
---|
361 | jj[k] = j;
|
---|
362 | ++k;
|
---|
363 | }
|
---|
364 | var po = new ParallelOptions { MaxDegreeOfParallelism = nThreads };
|
---|
365 | var partitioner = Partitioner.Create(0, n);
|
---|
366 | var locker = new object();
|
---|
367 | Parallel.ForEach(partitioner, new ParallelOptions { MaxDegreeOfParallelism = 4 }, (range, loop) => {
|
---|
368 | var partial = 0d;
|
---|
369 | for (int idx = range.Item1; idx < range.Item2; ++idx) {
|
---|
370 | int i = ii[idx];
|
---|
371 | int j = jj[idx];
|
---|
372 | partial += calculator.CalculateSolutionSimilarity(individuals[i], individuals[j]);
|
---|
373 | }
|
---|
374 | lock (locker) { similarity += partial; }
|
---|
375 | });
|
---|
376 | } else {
|
---|
377 | for (int i = 0; i < count - 1; ++i) {
|
---|
378 | for (int j = i + 1; j < count; ++j) {
|
---|
379 | similarity += calculator.CalculateSolutionSimilarity(individuals[i], individuals[j]);
|
---|
380 | }
|
---|
381 | }
|
---|
382 | }
|
---|
383 | return similarity / n;
|
---|
384 | }
|
---|
385 | }
|
---|
386 | }
|
---|