1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HEAL.Attic;
|
---|
23 | using HeuristicLab.Analysis;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using System;
|
---|
32 | using System.Collections.Generic;
|
---|
33 | using System.Linq;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic
|
---|
36 | {
|
---|
37 | [Item("SymbolicDataAnalysisUsefulGenesAnalyzer", "An analyzer which performs pruning by promoting genes in the population that outperform their containing individuals (the individuals are replaced by their subparts).")]
|
---|
38 | [StorableType("2CB2C4EE-9360-4C81-B354-926510E0DCD0")]
|
---|
39 | public class SymbolicDataAnalysisUsefulGenesAnalyzer : SingleSuccessorOperator, ISymbolicDataAnalysisAnalyzer
|
---|
40 | {
|
---|
41 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
42 | private const string QualityParameterName = "Quality";
|
---|
43 | private const string ResultCollectionParameterName = "Results";
|
---|
44 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
45 | private const string ProblemDataParameterName = "ProblemData";
|
---|
46 | private const string GenerationsParameterName = "Generations";
|
---|
47 | private const string UpdateCounterParameterName = "UpdateCounter";
|
---|
48 | private const string UpdateIntervalParameterName = "UpdateInterval";
|
---|
49 | private const string MinimumGenerationsParameterName = "MinimumGenerations";
|
---|
50 | private const string PruningProbabilityParameterName = "PruningProbability";
|
---|
51 | private const string PercentageOfBestSolutionsParameterName = "PercentageOfBestSolutions";
|
---|
52 | private const string PromotedSubtreesResultName = "Promoted subtrees";
|
---|
53 | private const string AverageQualityImprovementResultName = "Average quality improvement";
|
---|
54 | private const string AverageLengthReductionResultName = "Average length reduction";
|
---|
55 | private const string RandomParameterName = "Random";
|
---|
56 |
|
---|
57 | #region Parameters
|
---|
58 | public IScopeTreeLookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
59 | get { return (IScopeTreeLookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
60 | }
|
---|
61 |
|
---|
62 | public IScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
63 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
|
---|
64 | }
|
---|
65 |
|
---|
66 | public ILookupParameter<IRandom> RandomParameter {
|
---|
67 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
68 | }
|
---|
69 |
|
---|
70 | public ILookupParameter<ResultCollection> ResultCollectionParameter {
|
---|
71 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultCollectionParameterName]; }
|
---|
72 | }
|
---|
73 |
|
---|
74 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
75 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
76 | }
|
---|
77 |
|
---|
78 | public ILookupParameter<IDataAnalysisProblemData> ProblemDataParameter {
|
---|
79 | get { return (ILookupParameter<IDataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
80 | }
|
---|
81 |
|
---|
82 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
83 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
84 | }
|
---|
85 |
|
---|
86 | public ValueParameter<IntValue> UpdateCounterParameter {
|
---|
87 | get { return (ValueParameter<IntValue>)Parameters[UpdateCounterParameterName]; }
|
---|
88 | }
|
---|
89 |
|
---|
90 | public ValueParameter<IntValue> UpdateIntervalParameter {
|
---|
91 | get { return (ValueParameter<IntValue>)Parameters[UpdateIntervalParameterName]; }
|
---|
92 | }
|
---|
93 |
|
---|
94 | public ValueParameter<IntValue> MinimumGenerationsParameter {
|
---|
95 | get { return (ValueParameter<IntValue>)Parameters[MinimumGenerationsParameterName]; }
|
---|
96 | }
|
---|
97 |
|
---|
98 | public ValueParameter<PercentValue> PercentageOfBestSolutionsParameter {
|
---|
99 | get { return (ValueParameter<PercentValue>)Parameters[PercentageOfBestSolutionsParameterName]; }
|
---|
100 | }
|
---|
101 |
|
---|
102 | public ValueParameter<PercentValue> PruningProbabilityParameter {
|
---|
103 | get { return (ValueParameter<PercentValue>)Parameters[PruningProbabilityParameterName]; }
|
---|
104 | }
|
---|
105 | #endregion
|
---|
106 |
|
---|
107 | #region Parameter properties
|
---|
108 | public int UpdateCounter {
|
---|
109 | get { return UpdateCounterParameter.Value.Value; }
|
---|
110 | set { UpdateCounterParameter.Value.Value = value; }
|
---|
111 | }
|
---|
112 |
|
---|
113 | public int UpdateInterval {
|
---|
114 | get { return UpdateIntervalParameter.Value.Value; }
|
---|
115 | set { UpdateIntervalParameter.Value.Value = value; }
|
---|
116 | }
|
---|
117 |
|
---|
118 | public int MinimumGenerations {
|
---|
119 | get { return MinimumGenerationsParameter.Value.Value; }
|
---|
120 | set { MinimumGenerationsParameter.Value.Value = value; }
|
---|
121 | }
|
---|
122 |
|
---|
123 | public double PercentageOfBestSolutions {
|
---|
124 | get { return PercentageOfBestSolutionsParameter.Value.Value; }
|
---|
125 | set { PercentageOfBestSolutionsParameter.Value.Value = value; }
|
---|
126 | }
|
---|
127 |
|
---|
128 | public double PruningProbability {
|
---|
129 | get { return PruningProbabilityParameter.Value.Value; }
|
---|
130 | set { PruningProbabilityParameter.Value.Value = value; }
|
---|
131 | }
|
---|
132 | #endregion
|
---|
133 |
|
---|
134 | public SymbolicDataAnalysisUsefulGenesAnalyzer()
|
---|
135 | {
|
---|
136 | #region Add parameters
|
---|
137 | Parameters.Add(new ScopeTreeLookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName));
|
---|
138 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(QualityParameterName));
|
---|
139 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName));
|
---|
140 | Parameters.Add(new LookupParameter<ResultCollection>(ResultCollectionParameterName));
|
---|
141 | Parameters.Add(new LookupParameter<IDataAnalysisProblemData>(ProblemDataParameterName));
|
---|
142 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName));
|
---|
143 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName));
|
---|
144 | Parameters.Add(new ValueParameter<IntValue>(UpdateCounterParameterName, new IntValue(0)));
|
---|
145 | Parameters.Add(new ValueParameter<IntValue>(UpdateIntervalParameterName, new IntValue(1)));
|
---|
146 | Parameters.Add(new ValueParameter<IntValue>(MinimumGenerationsParameterName, "The minimum number of generations the algorithm must be let to evolve before applying this analyzer.", new IntValue(50)));
|
---|
147 | Parameters.Add(new ValueParameter<PercentValue>(PercentageOfBestSolutionsParameterName, "How many of the best individuals should be pruned using this method.", new PercentValue(1.0)));
|
---|
148 | Parameters.Add(new ValueParameter<PercentValue>(PruningProbabilityParameterName, "The probability to apply pruning", new PercentValue(0.1)));
|
---|
149 | #endregion
|
---|
150 | }
|
---|
151 |
|
---|
152 | protected SymbolicDataAnalysisUsefulGenesAnalyzer(SymbolicDataAnalysisUsefulGenesAnalyzer original, Cloner cloner)
|
---|
153 | : base(original, cloner) { }
|
---|
154 |
|
---|
155 | public override IDeepCloneable Clone(Cloner cloner)
|
---|
156 | {
|
---|
157 | return new SymbolicDataAnalysisUsefulGenesAnalyzer(this, cloner);
|
---|
158 | }
|
---|
159 |
|
---|
160 | [StorableConstructor]
|
---|
161 | protected SymbolicDataAnalysisUsefulGenesAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
162 |
|
---|
163 | public bool EnabledByDefault {
|
---|
164 | get { return false; }
|
---|
165 | }
|
---|
166 |
|
---|
167 | public override void InitializeState()
|
---|
168 | {
|
---|
169 | UpdateCounter = 0;
|
---|
170 | base.InitializeState();
|
---|
171 | }
|
---|
172 |
|
---|
173 | public override IOperation Apply()
|
---|
174 | {
|
---|
175 | int generations = GenerationsParameter.ActualValue.Value;
|
---|
176 | #region Update counter & update interval
|
---|
177 | if (generations < MinimumGenerations)
|
---|
178 | return base.Apply();
|
---|
179 | UpdateCounter++;
|
---|
180 | if (UpdateCounter != UpdateInterval)
|
---|
181 | {
|
---|
182 | return base.Apply();
|
---|
183 | }
|
---|
184 | UpdateCounter = 0;
|
---|
185 | #endregion
|
---|
186 |
|
---|
187 | var trees = SymbolicExpressionTreeParameter.ActualValue.ToArray();
|
---|
188 | var qualities = QualityParameter.ActualValue.ToArray();
|
---|
189 |
|
---|
190 | Array.Sort(qualities, trees); // sort trees array based on qualities
|
---|
191 |
|
---|
192 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
193 | var problemData = (IRegressionProblemData)ProblemDataParameter.ActualValue;
|
---|
194 | var rows = problemData.TrainingIndices.ToList();
|
---|
195 | var random = RandomParameter.ActualValue;
|
---|
196 |
|
---|
197 | int replacedTrees = 0;
|
---|
198 | int avgLengthReduction = 0;
|
---|
199 | double avgQualityImprovement = 0;
|
---|
200 |
|
---|
201 | var count = (int)Math.Floor(trees.Length * PercentageOfBestSolutions);
|
---|
202 |
|
---|
203 | for (int i = trees.Length - 1; i >= trees.Length - count; --i)
|
---|
204 | {
|
---|
205 | if (random.NextDouble() > PruningProbability) continue;
|
---|
206 | var tree = trees[i];
|
---|
207 | var quality = qualities[i].Value;
|
---|
208 | var root = tree.Root.GetSubtree(0).GetSubtree(0);
|
---|
209 |
|
---|
210 | foreach (var s in root.IterateNodesPrefix().Skip(1))
|
---|
211 | {
|
---|
212 | var r2 = EvaluateSubtree(s, interpreter, problemData, rows);
|
---|
213 | if (double.IsNaN(r2) || r2 <= quality) continue;
|
---|
214 | avgQualityImprovement += (r2 - quality);
|
---|
215 | avgLengthReduction += (tree.Length - s.GetLength());
|
---|
216 | replacedTrees++;
|
---|
217 | // replace tree with its own subtree
|
---|
218 | var startNode = tree.Root.GetSubtree(0);
|
---|
219 | startNode.RemoveSubtree(0);
|
---|
220 | startNode.AddSubtree(s);
|
---|
221 | // update tree quality
|
---|
222 | qualities[i].Value = r2;
|
---|
223 |
|
---|
224 | break;
|
---|
225 | }
|
---|
226 | }
|
---|
227 |
|
---|
228 | avgQualityImprovement = replacedTrees == 0 ? 0 : avgQualityImprovement / replacedTrees;
|
---|
229 | avgLengthReduction = replacedTrees == 0 ? 0 : (int)Math.Round((double)avgLengthReduction / replacedTrees);
|
---|
230 |
|
---|
231 | var results = ResultCollectionParameter.ActualValue;
|
---|
232 | DataTable table;
|
---|
233 | if (results.ContainsKey(PromotedSubtreesResultName))
|
---|
234 | {
|
---|
235 | table = (DataTable)results[PromotedSubtreesResultName].Value;
|
---|
236 | }
|
---|
237 | else
|
---|
238 | {
|
---|
239 | table = new DataTable(PromotedSubtreesResultName);
|
---|
240 | table.Rows.Add(new DataRow(PromotedSubtreesResultName));
|
---|
241 | results.Add(new Result(PromotedSubtreesResultName, table));
|
---|
242 | }
|
---|
243 | table.Rows[PromotedSubtreesResultName].Values.Add(replacedTrees);
|
---|
244 |
|
---|
245 | if (results.ContainsKey(AverageQualityImprovementResultName))
|
---|
246 | {
|
---|
247 | table = (DataTable)results[AverageQualityImprovementResultName].Value;
|
---|
248 | }
|
---|
249 | else
|
---|
250 | {
|
---|
251 | table = new DataTable(AverageQualityImprovementResultName);
|
---|
252 | table.Rows.Add(new DataRow(AverageQualityImprovementResultName));
|
---|
253 | results.Add(new Result(AverageQualityImprovementResultName, table));
|
---|
254 | }
|
---|
255 | table.Rows[AverageQualityImprovementResultName].Values.Add(avgQualityImprovement);
|
---|
256 |
|
---|
257 | if (results.ContainsKey(AverageLengthReductionResultName))
|
---|
258 | {
|
---|
259 | table = (DataTable)results[AverageLengthReductionResultName].Value;
|
---|
260 | }
|
---|
261 | else
|
---|
262 | {
|
---|
263 | table = new DataTable(AverageLengthReductionResultName);
|
---|
264 | table.Rows.Add(new DataRow(AverageLengthReductionResultName));
|
---|
265 | results.Add(new Result(AverageLengthReductionResultName, table));
|
---|
266 | }
|
---|
267 | table.Rows[AverageLengthReductionResultName].Values.Add(avgLengthReduction);
|
---|
268 |
|
---|
269 | return base.Apply();
|
---|
270 | }
|
---|
271 |
|
---|
272 | private static double EvaluateSubtree(ISymbolicExpressionTreeNode subtree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IRegressionProblemData problemData, List<int> rows)
|
---|
273 | {
|
---|
274 | var linearInterpreter = (SymbolicDataAnalysisExpressionTreeLinearInterpreter)interpreter;
|
---|
275 | var dataset = problemData.Dataset;
|
---|
276 |
|
---|
277 | var targetValues = dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
278 | var estimatedValues = linearInterpreter.GetValues(subtree, dataset, rows);
|
---|
279 |
|
---|
280 | OnlineCalculatorError error;
|
---|
281 | double r = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out error);
|
---|
282 | return (error == OnlineCalculatorError.None) ? r * r : double.NaN;
|
---|
283 | }
|
---|
284 | }
|
---|
285 | }
|
---|