[11458] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[17434] | 22 | using HEAL.Attic;
|
---|
[11458] | 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
[17434] | 29 | using System;
|
---|
| 30 | using System.Collections.Generic;
|
---|
| 31 | using System.Linq;
|
---|
[11458] | 32 | using DataRow = HeuristicLab.Analysis.DataRow;
|
---|
| 33 | using DataTable = HeuristicLab.Analysis.DataTable;
|
---|
| 34 |
|
---|
[17434] | 35 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic
|
---|
| 36 | {
|
---|
[11458] | 37 | [Item("Poly-10 building blocks analyzer", "An analyzer which attempts to identify parts of the Poly-10 formula")]
|
---|
[17434] | 38 | [StorableType("FA93D06D-B7CE-428A-8B22-ACB9A2BCE3CB")]
|
---|
| 39 | public class SymbolicDataAnalysisPoly10Analyzer : SymbolicDataAnalysisAnalyzer
|
---|
| 40 | {
|
---|
[11458] | 41 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
| 42 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 43 | private const string GenerationsParameterName = "Generations";
|
---|
| 44 | private const string PhenotypicSimilarityThresholdParameterName = "PhenotypicSimilarityThreshold";
|
---|
| 45 | private const string UpdateCounterParameterName = "UpdateCounter";
|
---|
| 46 | private const string UpdateIntervalParameterName = "UpdateInterval";
|
---|
[11462] | 47 | private const string BuildingBlocksFrequenciesTableName = "Building blocks frequencies";
|
---|
[11458] | 48 |
|
---|
| 49 | // store evaluations of building blocks for phenotypic matching
|
---|
| 50 | private readonly Dictionary<string, List<double>> evaluationMap = new Dictionary<string, List<double>>();
|
---|
| 51 | private readonly Dictionary<string, ISymbolicExpressionTreeNode> fragmentMap = new Dictionary<string, ISymbolicExpressionTreeNode>();
|
---|
| 52 | private readonly Dictionary<string, string> prettyLabels = new Dictionary<string, string>();
|
---|
| 53 | private readonly SymbolicExpressionImporter importer = new SymbolicExpressionImporter();
|
---|
| 54 |
|
---|
| 55 | #region Parameters
|
---|
| 56 | public IValueParameter<DoubleValue> PhenotypicSimilarityThresholdParameter {
|
---|
| 57 | get { return (IValueParameter<DoubleValue>)Parameters[PhenotypicSimilarityThresholdParameterName]; }
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
| 61 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | public ILookupParameter<IDataAnalysisProblemData> ProblemDataParameter {
|
---|
| 65 | get { return (ILookupParameter<IDataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
| 69 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | public ValueParameter<IntValue> UpdateCounterParameter {
|
---|
| 73 | get { return (ValueParameter<IntValue>)Parameters[UpdateCounterParameterName]; }
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | public ValueParameter<IntValue> UpdateIntervalParameter {
|
---|
| 77 | get { return (ValueParameter<IntValue>)Parameters[UpdateIntervalParameterName]; }
|
---|
| 78 | }
|
---|
| 79 | #endregion
|
---|
| 80 |
|
---|
| 81 | #region Parameter properties
|
---|
| 82 | public double PhenotypicSimilarityThreshold {
|
---|
| 83 | get { return PhenotypicSimilarityThresholdParameter.Value.Value; }
|
---|
| 84 | set { PhenotypicSimilarityThresholdParameter.Value.Value = value; }
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | public int UpdateCounter {
|
---|
| 88 | get { return UpdateCounterParameter.Value.Value; }
|
---|
| 89 | set { UpdateCounterParameter.Value.Value = value; }
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | public int UpdateInterval {
|
---|
| 93 | get { return UpdateIntervalParameter.Value.Value; }
|
---|
| 94 | set { UpdateIntervalParameter.Value.Value = value; }
|
---|
| 95 | }
|
---|
| 96 | #endregion
|
---|
| 97 |
|
---|
[17434] | 98 | public SymbolicDataAnalysisPoly10Analyzer()
|
---|
| 99 | {
|
---|
[11458] | 100 | #region Add parameters
|
---|
| 101 | Parameters.Add(new LookupParameter<IDataAnalysisProblemData>(ProblemDataParameterName));
|
---|
| 102 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName));
|
---|
| 103 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName));
|
---|
| 104 | Parameters.Add(new ValueParameter<DoubleValue>(PhenotypicSimilarityThresholdParameterName, "The phenotypic similarity threshold", new DoubleValue(0.9)));
|
---|
| 105 | Parameters.Add(new ValueParameter<IntValue>(UpdateCounterParameterName, new IntValue(0)));
|
---|
| 106 | Parameters.Add(new ValueParameter<IntValue>(UpdateIntervalParameterName, new IntValue(1)));
|
---|
| 107 | #endregion
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | [StorableConstructor]
|
---|
[17434] | 111 | protected SymbolicDataAnalysisPoly10Analyzer(StorableConstructorFlag _) : base(_) { }
|
---|
[11458] | 112 |
|
---|
| 113 | protected SymbolicDataAnalysisPoly10Analyzer(SymbolicDataAnalysisPoly10Analyzer original, Cloner cloner)
|
---|
[17434] | 114 | : base(original, cloner)
|
---|
| 115 | {
|
---|
[11458] | 116 | }
|
---|
| 117 |
|
---|
[17434] | 118 | public override IDeepCloneable Clone(Cloner cloner)
|
---|
| 119 | {
|
---|
[11458] | 120 | return new SymbolicDataAnalysisPoly10Analyzer(this, cloner);
|
---|
| 121 | }
|
---|
| 122 |
|
---|
[11493] | 123 | new public bool EnabledByDefault {
|
---|
[11458] | 124 | get { return false; }
|
---|
| 125 | }
|
---|
| 126 |
|
---|
[17434] | 127 | public override IOperation Apply()
|
---|
| 128 | {
|
---|
[11458] | 129 | #region Update counter & update interval
|
---|
| 130 | UpdateCounter++;
|
---|
[17434] | 131 | if (UpdateCounter != UpdateInterval)
|
---|
| 132 | {
|
---|
[11458] | 133 | return base.Apply();
|
---|
| 134 | }
|
---|
| 135 | UpdateCounter = 0;
|
---|
| 136 | #endregion
|
---|
| 137 |
|
---|
| 138 | int generations = GenerationsParameter.ActualValue.Value;
|
---|
| 139 | if (generations == 0)
|
---|
| 140 | InitializeBuildingBlockCollection();
|
---|
| 141 |
|
---|
| 142 | var results = ResultCollectionParameter.ActualValue;
|
---|
| 143 | var trees = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 144 | var interpreter = (SymbolicDataAnalysisExpressionTreeLinearInterpreter)SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
| 145 | var dataset = ProblemDataParameter.ActualValue.Dataset;
|
---|
| 146 | var rows = ProblemDataParameter.ActualValue.TrainingIndices.ToList();
|
---|
[12283] | 147 | var bbFrequencies = evaluationMap.Keys.ToDictionary(x => x, x => 0);
|
---|
[11458] | 148 |
|
---|
[17434] | 149 | foreach (var key in evaluationMap.Keys)
|
---|
| 150 | {
|
---|
[11458] | 151 | var bb = fragmentMap[key];
|
---|
| 152 | int len = bb.GetLength();
|
---|
[17434] | 153 | foreach (var t in trees)
|
---|
| 154 | {
|
---|
[11458] | 155 | var root = t.Root.GetSubtree(0).GetSubtree(0);
|
---|
| 156 | var nodes = root.IterateNodesPrefix().Where(x => x.GetLength() > len).ToList();
|
---|
| 157 |
|
---|
[17434] | 158 | for (int i = 0; i < nodes.Count; ++i)
|
---|
| 159 | {
|
---|
[11458] | 160 | var s = nodes[i];
|
---|
| 161 | var values = interpreter.GetValues(s, dataset, rows);
|
---|
[12283] | 162 | OnlineCalculatorError error;
|
---|
[12891] | 163 | var r = OnlinePearsonsRCalculator.Calculate(values, evaluationMap[key], out error);
|
---|
| 164 | var r2 = error == OnlineCalculatorError.None ? r * r : double.NaN;
|
---|
[17434] | 165 | if (!double.IsNaN(r2) && r2 >= PhenotypicSimilarityThreshold)
|
---|
| 166 | {
|
---|
[11458] | 167 | bbFrequencies[key]++;
|
---|
| 168 | i += s.GetLength();
|
---|
| 169 | }
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 | }
|
---|
[11462] | 173 | var table = (DataTable)results[BuildingBlocksFrequenciesTableName].Value;
|
---|
[17434] | 174 | foreach (var pair in bbFrequencies)
|
---|
| 175 | {
|
---|
[12283] | 176 | var formatter = new SymbolicExpressionTreeStringFormatter();
|
---|
| 177 | // var label = formatter.Format(fragmentMap[pair.Key]) + "(" + prettyLabels[pair.Key] + ")";
|
---|
[11458] | 178 | var label = prettyLabels[pair.Key];
|
---|
[17434] | 179 | if (table.Rows.ContainsKey(label))
|
---|
| 180 | {
|
---|
[12283] | 181 | var row = table.Rows[label];
|
---|
[12891] | 182 | row.Values.Add(pair.Value);
|
---|
[12283] | 183 | }
|
---|
[11458] | 184 | }
|
---|
| 185 |
|
---|
| 186 | return base.Apply();
|
---|
| 187 | }
|
---|
| 188 |
|
---|
[17434] | 189 | private void InitializeBuildingBlockCollection()
|
---|
| 190 | {
|
---|
[11458] | 191 | #region Add building blocks
|
---|
| 192 | // building blocks
|
---|
| 193 | const string x1 = "(variable 1 X1)";
|
---|
| 194 | const string x2 = "(variable 1 X2)";
|
---|
| 195 | const string x3 = "(variable 1 X3)";
|
---|
| 196 | const string x4 = "(variable 1 X4)";
|
---|
| 197 | const string x5 = "(variable 1 X5)";
|
---|
| 198 | const string x6 = "(variable 1 X6)";
|
---|
| 199 | const string x7 = "(variable 1 X7)";
|
---|
[11461] | 200 | // x8 is never used in the formula
|
---|
| 201 | // const string x8 = "(variable 1 X8)";
|
---|
[11458] | 202 | const string x9 = "(variable 1 X9)";
|
---|
| 203 | const string x10 = "(variable 1 X10)";
|
---|
| 204 | string s1 = String.Format("(* {0} {1})", x1, x2);
|
---|
| 205 | string s2 = String.Format("(* {0} {1})", x3, x4);
|
---|
| 206 | string s3 = String.Format("(* {0} {1})", x5, x6);
|
---|
| 207 | string s4 = String.Format("(* (* {0} {1}) {2})", x1, x7, x9);
|
---|
| 208 | string s5 = String.Format("(* (* {0} {1}) {2})", x3, x6, x10);
|
---|
| 209 | string s6 = String.Format("(+ {0} {1})", s1, s2); // x1x2 + x3x4
|
---|
| 210 | string s7 = String.Format("(+ {0} {1})", s1, s3); // x1x2 + x5x6
|
---|
| 211 | string s8 = String.Format("(+ {0} {1})", s2, s3); // x3x4 + x5x6
|
---|
| 212 | string s9 = String.Format("(+ (+ {0} {1}) {2})", s1, s2, s3); // x1x2 + x3x4 + x5x6
|
---|
| 213 | string s10 = String.Format("(+ (+ {0} {1}) {2})", s4, s5, s9); // x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10
|
---|
| 214 | prettyLabels[s1] = "X1*X2";
|
---|
| 215 | prettyLabels[s2] = "X3*X4";
|
---|
| 216 | prettyLabels[s3] = "X5*X6";
|
---|
| 217 | prettyLabels[s4] = "X1*X7*X9";
|
---|
| 218 | prettyLabels[s5] = "X3*X6*X10";
|
---|
| 219 | prettyLabels[s6] = prettyLabels[s1] + " + " + prettyLabels[s2];
|
---|
| 220 | prettyLabels[s7] = prettyLabels[s1] + " + " + prettyLabels[s3];
|
---|
| 221 | prettyLabels[s8] = prettyLabels[s2] + " + " + prettyLabels[s3];
|
---|
| 222 | prettyLabels[s9] = prettyLabels[s1] + " + " + prettyLabels[s2] + " + " + prettyLabels[s3];
|
---|
| 223 | prettyLabels[s10] = prettyLabels[s9] + " + " + prettyLabels[s4] + " + " + prettyLabels[s5];
|
---|
| 224 | #endregion
|
---|
| 225 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
| 226 | var dataset = ProblemDataParameter.ActualValue.Dataset;
|
---|
| 227 | var rows = ProblemDataParameter.ActualValue.TrainingIndices.ToList();
|
---|
| 228 |
|
---|
[17434] | 229 | foreach (var s in new[] { s1, s2, s3, s4, s5, s6, s7, s8, s9, s10 })
|
---|
| 230 | {
|
---|
[11458] | 231 | if (evaluationMap.ContainsKey(s)) continue;
|
---|
| 232 | var t = importer.Import(s);
|
---|
| 233 | evaluationMap.Add(s, interpreter.GetSymbolicExpressionTreeValues(t, dataset, rows).ToList());
|
---|
| 234 | fragmentMap.Add(s, t.Root.GetSubtree(0).GetSubtree(0));
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 | var results = ResultCollectionParameter.ActualValue;
|
---|
| 238 | DataTable table;
|
---|
[17434] | 239 | if (!results.ContainsKey(BuildingBlocksFrequenciesTableName))
|
---|
| 240 | {
|
---|
[11462] | 241 | table = new DataTable(BuildingBlocksFrequenciesTableName);
|
---|
| 242 | results.Add(new Result(BuildingBlocksFrequenciesTableName, table));
|
---|
[17434] | 243 | }
|
---|
| 244 | else
|
---|
| 245 | {
|
---|
[11462] | 246 | table = (DataTable)results[BuildingBlocksFrequenciesTableName].Value;
|
---|
[11458] | 247 | }
|
---|
| 248 | table.Rows.Clear();
|
---|
[17434] | 249 | foreach (var key in evaluationMap.Keys)
|
---|
| 250 | {
|
---|
[12283] | 251 | table.Rows.Add(new DataRow(prettyLabels[key]) { VisualProperties = { StartIndexZero = true } });
|
---|
[11458] | 252 | }
|
---|
| 253 | }
|
---|
| 254 | }
|
---|
| 255 | }
|
---|