1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Views {
|
---|
28 | public class ReingoldTilfordLayoutEngine<T> : ILayoutEngine<T> where T : class {
|
---|
29 | public int NodeWidth { get; set; }
|
---|
30 | public int NodeHeight { get; set; }
|
---|
31 | private int minHorizontalSpacing = 5;
|
---|
32 | public int HorizontalSpacing {
|
---|
33 | get { return minHorizontalSpacing; }
|
---|
34 | set { minHorizontalSpacing = value; }
|
---|
35 | }
|
---|
36 |
|
---|
37 | private int minVerticalSpacing = 5;
|
---|
38 | public int VerticalSpacing {
|
---|
39 | get { return minVerticalSpacing; }
|
---|
40 | set { minVerticalSpacing = value; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | private readonly Func<T, IEnumerable<T>> GetChildren;
|
---|
44 |
|
---|
45 | public ReingoldTilfordLayoutEngine(Func<T, IEnumerable<T>> GetChildren) {
|
---|
46 | this.GetChildren = GetChildren;
|
---|
47 | }
|
---|
48 |
|
---|
49 | public IEnumerable<VisualTreeNode<T>> CalculateLayout(T root) {
|
---|
50 | return CalculateLayout(root, 0, 0);
|
---|
51 | }
|
---|
52 |
|
---|
53 | public IEnumerable<VisualTreeNode<T>> CalculateLayout(T root, float width, float height) {
|
---|
54 | Dictionary<T, LayoutNode<T>> layoutNodeMap = new Dictionary<T, LayoutNode<T>>();
|
---|
55 | var layoutRoot = new LayoutNode<T> { Content = root, Width = NodeWidth, Height = NodeHeight, };
|
---|
56 | layoutRoot.Ancestor = layoutRoot;
|
---|
57 | Expand(layoutRoot, layoutNodeMap);
|
---|
58 |
|
---|
59 | FirstWalk(layoutRoot);
|
---|
60 | SecondWalk(layoutRoot, -layoutRoot.Prelim);
|
---|
61 | NormalizeCoordinates(layoutNodeMap.Values);
|
---|
62 | if (width > 0 && height > 0) {
|
---|
63 | FitToBounds(width, height, layoutNodeMap.Values);
|
---|
64 | Center(width, height, layoutNodeMap.Values);
|
---|
65 | }
|
---|
66 |
|
---|
67 | return layoutNodeMap.Values.Select(x => new VisualTreeNode<T>(x.Content) {
|
---|
68 | Width = (int)Math.Round(x.Width),
|
---|
69 | Height = (int)Math.Round(x.Height),
|
---|
70 | X = (int)Math.Round(x.X),
|
---|
71 | Y = (int)Math.Round(x.Y)
|
---|
72 | });
|
---|
73 | }
|
---|
74 |
|
---|
75 | private void Expand(LayoutNode<T> lRoot, Dictionary<T, LayoutNode<T>> map) {
|
---|
76 | map.Add(lRoot.Content, lRoot);
|
---|
77 | var children = GetChildren(lRoot.Content).ToList();
|
---|
78 | if (!children.Any()) return;
|
---|
79 | lRoot.Children = new List<LayoutNode<T>>(children.Count);
|
---|
80 | for (int i = 0; i < children.Count; ++i) {
|
---|
81 | var node = new LayoutNode<T> {
|
---|
82 | Content = children[i],
|
---|
83 | Number = i,
|
---|
84 | Parent = lRoot,
|
---|
85 | Level = lRoot.Level + 1,
|
---|
86 | Width = NodeWidth,
|
---|
87 | Height = NodeHeight
|
---|
88 | };
|
---|
89 | node.Ancestor = node;
|
---|
90 | lRoot.Children.Add(node);
|
---|
91 | Expand(node, map);
|
---|
92 | }
|
---|
93 | }
|
---|
94 |
|
---|
95 |
|
---|
96 | /// <summary>
|
---|
97 | /// Transform LayoutNode coordinates so that all coordinates are positive and start from (0,0)
|
---|
98 | /// </summary>
|
---|
99 | private static void NormalizeCoordinates(IEnumerable<LayoutNode<T>> nodes) {
|
---|
100 | float xmin = 0, ymin = 0;
|
---|
101 | foreach (var node in nodes) {
|
---|
102 | if (xmin > node.X) xmin = node.X;
|
---|
103 | if (ymin > node.Y) ymin = node.Y;
|
---|
104 | }
|
---|
105 | foreach (var node in nodes) {
|
---|
106 | node.X -= xmin;
|
---|
107 | node.Y -= ymin;
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | private void Center(float width, float height, IEnumerable<LayoutNode<T>> nodes) {
|
---|
112 | // center layout on screen
|
---|
113 | var bounds = Bounds(nodes);
|
---|
114 | float dx = 0, dy = 0;
|
---|
115 | if (width > bounds.Width) { dx = (width - bounds.Width) / 2f; }
|
---|
116 | if (height > bounds.Height) { dy = (height - bounds.Height) / 2f; }
|
---|
117 | foreach (var node in nodes) { node.Translate(dx, dy); }
|
---|
118 | }
|
---|
119 |
|
---|
120 | private void FitToBounds(float width, float height, IEnumerable<LayoutNode<T>> nodes) {
|
---|
121 | var bounds = Bounds(nodes);
|
---|
122 | var myWidth = bounds.Width;
|
---|
123 | var myHeight = bounds.Height;
|
---|
124 |
|
---|
125 | if (myWidth <= width && myHeight <= height) return; // no need to fit since we are within bounds
|
---|
126 |
|
---|
127 | var layers = nodes.GroupBy(node => node.Level, node => node).ToList();
|
---|
128 |
|
---|
129 | if (myWidth > width) {
|
---|
130 | // need to scale horizontally
|
---|
131 | float x = width / myWidth;
|
---|
132 | foreach (var node in layers.SelectMany(g => g)) {
|
---|
133 | node.X *= x;
|
---|
134 | node.Width *= x;
|
---|
135 | }
|
---|
136 | float spacing = minHorizontalSpacing * x;
|
---|
137 | foreach (var layer in layers) {
|
---|
138 | var nodesLayer = layer.ToList();
|
---|
139 | float minWidth = float.MaxValue;
|
---|
140 | for (int i = 0; i < nodesLayer.Count - 1; ++i) { minWidth = Math.Min(minWidth, nodesLayer[i + 1].X - nodesLayer[i].X); }
|
---|
141 | float w = Math.Min(NodeWidth, minWidth - spacing);
|
---|
142 | foreach (var node in nodesLayer) {
|
---|
143 | node.X += (node.Width - w) / 2f;
|
---|
144 | node.Width = w;
|
---|
145 | //this is a simple solution to ensure that the leftmost and rightmost nodes are not drawn partially offscreen due to scaling and offset
|
---|
146 | //this should work well enough 99.9% of the time with no noticeable visual difference
|
---|
147 | if (node.X < 0) {
|
---|
148 | node.Width += node.X;
|
---|
149 | node.X = 0;
|
---|
150 | } else if (node.X + node.Width > width) {
|
---|
151 | node.Width = width - node.X;
|
---|
152 | }
|
---|
153 | }
|
---|
154 | }
|
---|
155 | }
|
---|
156 | if (myHeight > height) {
|
---|
157 | // need to scale vertically
|
---|
158 | float x = height / myHeight;
|
---|
159 | foreach (var node in layers.SelectMany(g => g)) {
|
---|
160 | node.Y *= x;
|
---|
161 | node.Height *= x;
|
---|
162 | }
|
---|
163 | }
|
---|
164 | }
|
---|
165 |
|
---|
166 |
|
---|
167 | /// <summary>
|
---|
168 | /// Returns the bounding box for this layout. When the layout is normalized, the rectangle should be [0,0,xmin,xmax].
|
---|
169 | /// </summary>
|
---|
170 | /// <returns></returns>
|
---|
171 | private RectangleF Bounds(IEnumerable<LayoutNode<T>> nodes) {
|
---|
172 | float xmin = 0, xmax = 0, ymin = 0, ymax = 0;
|
---|
173 | foreach (LayoutNode<T> node in nodes) {
|
---|
174 | float x = node.X, y = node.Y;
|
---|
175 | if (xmin > x) xmin = x;
|
---|
176 | if (xmax < x) xmax = x;
|
---|
177 | if (ymin > y) ymin = y;
|
---|
178 | if (ymax < y) ymax = y;
|
---|
179 | }
|
---|
180 | return new RectangleF(xmin, ymin, xmax + NodeWidth, ymax + NodeHeight);
|
---|
181 | }
|
---|
182 |
|
---|
183 | #region methods specific to the reingold-tilford layout algorithm
|
---|
184 | private void FirstWalk(LayoutNode<T> v) {
|
---|
185 | LayoutNode<T> w;
|
---|
186 | if (v.IsLeaf) {
|
---|
187 | w = v.LeftSibling;
|
---|
188 | if (w != null) {
|
---|
189 | v.Prelim = w.Prelim + minHorizontalSpacing + NodeWidth;
|
---|
190 | }
|
---|
191 | } else {
|
---|
192 | var defaultAncestor = v.Children[0]; // leftmost child
|
---|
193 |
|
---|
194 | foreach (var child in v.Children) {
|
---|
195 | FirstWalk(child);
|
---|
196 | Apportion(child, ref defaultAncestor);
|
---|
197 | }
|
---|
198 | ExecuteShifts(v);
|
---|
199 | var leftmost = v.Children.First();
|
---|
200 | var rightmost = v.Children.Last();
|
---|
201 | float midPoint = (leftmost.Prelim + rightmost.Prelim) / 2;
|
---|
202 | w = v.LeftSibling;
|
---|
203 | if (w != null) {
|
---|
204 | v.Prelim = w.Prelim + minHorizontalSpacing + NodeWidth;
|
---|
205 | v.Mod = v.Prelim - midPoint;
|
---|
206 | } else {
|
---|
207 | v.Prelim = midPoint;
|
---|
208 | }
|
---|
209 | }
|
---|
210 | }
|
---|
211 |
|
---|
212 | private void SecondWalk(LayoutNode<T> v, float m) {
|
---|
213 | v.X = v.Prelim + m;
|
---|
214 | v.Y = v.Level * (minVerticalSpacing + NodeHeight);
|
---|
215 | if (v.IsLeaf) return;
|
---|
216 | foreach (var child in v.Children) {
|
---|
217 | SecondWalk(child, m + v.Mod);
|
---|
218 | }
|
---|
219 | }
|
---|
220 |
|
---|
221 | private void Apportion(LayoutNode<T> v, ref LayoutNode<T> defaultAncestor) {
|
---|
222 | var w = v.LeftSibling;
|
---|
223 | if (w == null) return;
|
---|
224 | LayoutNode<T> vip = v;
|
---|
225 | LayoutNode<T> vop = v;
|
---|
226 | LayoutNode<T> vim = w;
|
---|
227 | LayoutNode<T> vom = vip.LeftmostSibling;
|
---|
228 |
|
---|
229 | float sip = vip.Mod;
|
---|
230 | float sop = vop.Mod;
|
---|
231 | float sim = vim.Mod;
|
---|
232 | float som = vom.Mod;
|
---|
233 |
|
---|
234 | while (vim.NextRight != null && vip.NextLeft != null) {
|
---|
235 | vim = vim.NextRight;
|
---|
236 | vip = vip.NextLeft;
|
---|
237 | vom = vom.NextLeft;
|
---|
238 | vop = vop.NextRight;
|
---|
239 | vop.Ancestor = v;
|
---|
240 | float shift = (vim.Prelim + sim) - (vip.Prelim + sip) + minHorizontalSpacing + NodeWidth;
|
---|
241 | if (shift > 0) {
|
---|
242 | var ancestor = Ancestor(vim, v) ?? defaultAncestor;
|
---|
243 | MoveSubtree(ancestor, v, shift);
|
---|
244 | sip += shift;
|
---|
245 | sop += shift;
|
---|
246 | }
|
---|
247 | sim += vim.Mod;
|
---|
248 | sip += vip.Mod;
|
---|
249 | som += vom.Mod;
|
---|
250 | sop += vop.Mod;
|
---|
251 | }
|
---|
252 | if (vim.NextRight != null && vop.NextRight == null) {
|
---|
253 | vop.Thread = vim.NextRight;
|
---|
254 | vop.Mod += (sim - sop);
|
---|
255 | }
|
---|
256 | if (vip.NextLeft != null && vom.NextLeft == null) {
|
---|
257 | vom.Thread = vip.NextLeft;
|
---|
258 | vom.Mod += (sip - som);
|
---|
259 | defaultAncestor = v;
|
---|
260 | }
|
---|
261 | }
|
---|
262 |
|
---|
263 | private void MoveSubtree(LayoutNode<T> wm, LayoutNode<T> wp, float shift) {
|
---|
264 | int subtrees = wp.Number - wm.Number; // TODO: Investigate possible bug (if the value ever happens to be zero) - happens when the tree is actually a graph (but that's outside the use case of this algorithm which only works with trees)
|
---|
265 | if (subtrees == 0) throw new Exception("MoveSubtree failed: check if object is really a tree (no cycles)");
|
---|
266 | wp.Change -= shift / subtrees;
|
---|
267 | wp.Shift += shift;
|
---|
268 | wm.Change += shift / subtrees;
|
---|
269 | wp.Prelim += shift;
|
---|
270 | wp.Mod += shift;
|
---|
271 | }
|
---|
272 |
|
---|
273 | private void ExecuteShifts(LayoutNode<T> v) {
|
---|
274 | if (v.IsLeaf) return;
|
---|
275 | float shift = 0;
|
---|
276 | float change = 0;
|
---|
277 | for (int i = v.Children.Count - 1; i >= 0; --i) {
|
---|
278 | var w = v.Children[i];
|
---|
279 | w.Prelim += shift;
|
---|
280 | w.Mod += shift;
|
---|
281 | change += w.Change;
|
---|
282 | shift += (w.Shift + change);
|
---|
283 | }
|
---|
284 | }
|
---|
285 |
|
---|
286 | private LayoutNode<T> Ancestor(LayoutNode<T> u, LayoutNode<T> v) {
|
---|
287 | var ancestor = u.Ancestor;
|
---|
288 | if (ancestor == null) return null;
|
---|
289 | return ancestor.Parent == v.Parent ? ancestor : null;
|
---|
290 | }
|
---|
291 | #endregion
|
---|
292 | }
|
---|
293 | }
|
---|