1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.Random;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment {
|
---|
35 | /// <summary>
|
---|
36 | /// This is an implementation of the algorithm described in Mateus, G.R., Resende, M.G.C. & Silva, R.M.A. J Heuristics (2011) 17: 527. https://doi.org/10.1007/s10732-010-9144-0
|
---|
37 | /// </summary>
|
---|
38 | [Item("GreedyRandomizedSolutionCreator", "Creates a solution according to the procedure described in Mateus, G., Resende, M., and Silva, R. 2011. GRASP with path-relinking for the generalized quadratic assignment problem. Journal of Heuristics 17, Springer Netherlands, pp. 527-565.")]
|
---|
39 | [StorableClass]
|
---|
40 | public class GreedyRandomizedSolutionCreator : GQAPStochasticSolutionCreator {
|
---|
41 |
|
---|
42 | public IValueLookupParameter<IntValue> MaximumTriesParameter {
|
---|
43 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumTries"]; }
|
---|
44 | }
|
---|
45 | public IValueLookupParameter<BoolValue> CreateMostFeasibleSolutionParameter {
|
---|
46 | get { return (IValueLookupParameter<BoolValue>)Parameters["CreateMostFeasibleSolution"]; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | [StorableConstructor]
|
---|
50 | protected GreedyRandomizedSolutionCreator(bool deserializing) : base(deserializing) { }
|
---|
51 | protected GreedyRandomizedSolutionCreator(GreedyRandomizedSolutionCreator original, Cloner cloner)
|
---|
52 | : base(original, cloner) { }
|
---|
53 | public GreedyRandomizedSolutionCreator()
|
---|
54 | : base() {
|
---|
55 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumTries", "The maximum number of tries to create a feasible solution after which an exception is thrown. If it is set to 0 or a negative value there will be an infinite number of attempts.", new IntValue(100000)));
|
---|
56 | Parameters.Add(new ValueLookupParameter<BoolValue>("CreateMostFeasibleSolution", "If this is set to true the operator will always succeed, and outputs the solution with the least violation instead of throwing an exception.", new BoolValue(false)));
|
---|
57 | }
|
---|
58 |
|
---|
59 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
60 | return new GreedyRandomizedSolutionCreator(this, cloner);
|
---|
61 | }
|
---|
62 |
|
---|
63 | public static IntegerVector CreateSolution(IRandom random, GQAPInstance problemInstance,
|
---|
64 | int maximumTries, bool createMostFeasibleSolution, CancellationToken cancelToken) {
|
---|
65 | var weights = problemInstance.Weights;
|
---|
66 | var distances = problemInstance.Distances;
|
---|
67 | var installCosts = problemInstance.InstallationCosts;
|
---|
68 | var demands = problemInstance.Demands;
|
---|
69 | var capacities = problemInstance.Capacities.ToArray();
|
---|
70 | var transportCosts = problemInstance.TransportationCosts;
|
---|
71 | var equipments = demands.Length;
|
---|
72 | var locations = capacities.Length;
|
---|
73 | int tries = 0;
|
---|
74 | var slack = new double[locations];
|
---|
75 | double minViolation = double.MaxValue;
|
---|
76 | int[] assignment = null;
|
---|
77 | int[] bestAssignment = null;
|
---|
78 | var F = new List<int>(equipments); // set of (initially) all facilities / equipments
|
---|
79 | var CF = new List<int>(equipments); // set of chosen facilities / equipments
|
---|
80 | var L = new List<int>(locations); // set of (initially) all locations
|
---|
81 | var CL_list = new List<int>(locations); // list of chosen locations
|
---|
82 | var CL_selected = new bool[locations]; // bool decision if location is chosen
|
---|
83 | var T = new List<int>(equipments); // set of facilities / equpiments that can be assigned to the set of chosen locations (CL)
|
---|
84 | var H = new double[locations]; // proportions for choosing locations in stage 1
|
---|
85 | var W = new double[equipments]; // proportions for choosing facilities in stage 2
|
---|
86 | var Z = new double[locations]; // proportions for choosing locations in stage 2
|
---|
87 |
|
---|
88 | for (var k = 0; k < equipments; k++) {
|
---|
89 | for (var h = 0; h < equipments; h++) {
|
---|
90 | if (k == h) continue;
|
---|
91 | W[k] += weights[k, h];
|
---|
92 | }
|
---|
93 | W[k] *= demands[k];
|
---|
94 | }
|
---|
95 |
|
---|
96 | while (maximumTries <= 0 || tries < maximumTries) {
|
---|
97 | cancelToken.ThrowIfCancellationRequested();
|
---|
98 |
|
---|
99 | assignment = new int[equipments];
|
---|
100 |
|
---|
101 | Array.Copy(capacities, slack, locations); // line 2 of Algorihm 2
|
---|
102 | CF.Clear(); // line 2 of Algorihm 2
|
---|
103 | Array.Clear(CL_selected, 0, locations); // line 2 of Algorihm 2
|
---|
104 | CL_list.Clear(); // line 2 of Algorihm 2
|
---|
105 | T.Clear(); // line 2 of Algorihm 2
|
---|
106 |
|
---|
107 | F.Clear(); F.AddRange(Enumerable.Range(0, equipments)); // line 2 of Algorihm 2
|
---|
108 | L.Clear(); L.AddRange(Enumerable.Range(0, locations)); // line 2 of Algorihm 2
|
---|
109 |
|
---|
110 | Array.Clear(H, 0, H.Length);
|
---|
111 |
|
---|
112 | double threshold = 1.0; // line 3 of Algorithm 2
|
---|
113 | do { // line 4 of Algorithm 2
|
---|
114 | if (L.Count > 0 && random.NextDouble() < threshold) { // line 5 of Algorithm 2
|
---|
115 | // H is the proportion that a location is chosen
|
---|
116 | // The paper doesn't mention what happens if the candidate list CL
|
---|
117 | // does not contain an element in which case according to the formula
|
---|
118 | // all H_k elements would be 0 which would be equal to random selection
|
---|
119 | var HH = L.Select(x => H[x]);
|
---|
120 | int l = L.SampleProportional(random, 1, HH, false, false).Single(); // line 6 of Algorithm 2
|
---|
121 | L.Remove(l); // line 7 of Algorithm 2
|
---|
122 | CL_list.Add(l); // line 7 of Algorithm 2
|
---|
123 | CL_selected[l] = true; // line 7 of Algorithm 2
|
---|
124 | // incrementally updating location weights
|
---|
125 | foreach (var k in L)
|
---|
126 | H[k] += capacities[k] * capacities[l] / distances[k, l];
|
---|
127 |
|
---|
128 | T = new List<int>(WhereDemandEqualOrLess(F, GetMaximumSlack(slack, CL_selected), demands)); // line 8 of Algorithm 2
|
---|
129 | }
|
---|
130 | if (T.Count > 0) { // line 10 of Algorithm 2
|
---|
131 | // W is the proportion that an equipment is chosen
|
---|
132 | var WW = T.Select(x => W[x]);
|
---|
133 | var f = T.SampleProportional(random, 1, WW, false, false) // line 11 of Algorithm 2
|
---|
134 | .Single();
|
---|
135 | T.Remove(f); // line 12 of Algorithm 2
|
---|
136 | F.Remove(f); // line 12 of Algorithm 2
|
---|
137 | CF.Add(f); // line 12 of Algorithm 2
|
---|
138 | var R = WhereSlackGreaterOrEqual(CL_list, demands[f], slack).ToList(); // line 13 of Algorithm 2
|
---|
139 | // Z is the proportion that a location is chosen in stage 2
|
---|
140 | var l = R[0];
|
---|
141 | if (R.Count > 1) { // optimization, calculate probabilistic weights only in case |R| > 1
|
---|
142 | Array.Clear(Z, 0, R.Count);
|
---|
143 | var zk = 0;
|
---|
144 | foreach (var k in R) {
|
---|
145 | // d is an increase in fitness if f would be assigned to location k
|
---|
146 | var d = installCosts[f, k];
|
---|
147 | foreach (var i in CF) {
|
---|
148 | if (assignment[i] == 0) continue; // i is unassigned
|
---|
149 | var j = assignment[i] - 1;
|
---|
150 | d += transportCosts * weights[f, i] * distances[k, j];
|
---|
151 | }
|
---|
152 | foreach (var h in CL_list) {
|
---|
153 | if (k == h) continue;
|
---|
154 | Z[zk] += slack[k] * capacities[h] / (d * distances[k, h]);
|
---|
155 | }
|
---|
156 | zk++;
|
---|
157 | }
|
---|
158 | l = R.SampleProportional(random, 1, Z.Take(R.Count), false, false).Single(); // line 14 of Algorithm 2
|
---|
159 | }
|
---|
160 | assignment[f] = l + 1; // line 15 of Algorithm 2
|
---|
161 | slack[l] -= demands[f];
|
---|
162 | T = new List<int>(WhereDemandEqualOrLess(F, GetMaximumSlack(slack, CL_selected), demands)); // line 16 of Algorithm 2
|
---|
163 | threshold = 1.0 - (double)T.Count / Math.Max(F.Count, 1.0); // line 17 of Algorithm 2
|
---|
164 | }
|
---|
165 | } while (T.Count > 0 || L.Count > 0); // line 19 of Algorithm 2
|
---|
166 |
|
---|
167 | if (maximumTries > 0) tries++;
|
---|
168 |
|
---|
169 | if (F.Count == 0) {
|
---|
170 | bestAssignment = assignment.Select(x => x - 1).ToArray();
|
---|
171 | break;
|
---|
172 | } else if (createMostFeasibleSolution) {
|
---|
173 | // complete the solution and remember the one with least violation
|
---|
174 | foreach (var l in L.ToArray()) {
|
---|
175 | CL_list.Add(l);
|
---|
176 | CL_selected[l] = true;
|
---|
177 | L.Remove(l);
|
---|
178 | }
|
---|
179 | while (F.Count > 0) {
|
---|
180 | var f = F.Select((v, i) => new { Index = i, Value = v }).MaxItems(x => demands[x.Value]).SampleRandom(random);
|
---|
181 | var l = CL_list.MaxItems(x => slack[x]).SampleRandom(random);
|
---|
182 | F.RemoveAt(f.Index);
|
---|
183 | assignment[f.Value] = l + 1;
|
---|
184 | slack[l] -= demands[f.Value];
|
---|
185 | }
|
---|
186 | double violation = slack.Select(x => x < 0 ? -x : 0).Sum();
|
---|
187 | if (violation < minViolation) {
|
---|
188 | bestAssignment = assignment.Select(x => x - 1).ToArray();
|
---|
189 | minViolation = violation;
|
---|
190 | }
|
---|
191 | }
|
---|
192 | }
|
---|
193 |
|
---|
194 | if (bestAssignment == null)
|
---|
195 | throw new InvalidOperationException(String.Format("No solution could be found in {0} tries.", maximumTries));
|
---|
196 |
|
---|
197 | return new IntegerVector(bestAssignment);
|
---|
198 | }
|
---|
199 |
|
---|
200 | protected override IntegerVector CreateRandomSolution(IRandom random, GQAPInstance problemInstance) {
|
---|
201 | return CreateSolution(random, problemInstance,
|
---|
202 | MaximumTriesParameter.ActualValue.Value,
|
---|
203 | CreateMostFeasibleSolutionParameter.ActualValue.Value,
|
---|
204 | CancellationToken);
|
---|
205 | }
|
---|
206 |
|
---|
207 | private static IEnumerable<int> WhereDemandEqualOrLess(IEnumerable<int> facilities, double maximum, DoubleArray demands) {
|
---|
208 | foreach (int f in facilities) {
|
---|
209 | if (demands[f] <= maximum) yield return f;
|
---|
210 | }
|
---|
211 | }
|
---|
212 |
|
---|
213 | private static double GetMaximumSlack(double[] slack, bool[] CL) {
|
---|
214 | var max = double.MinValue;
|
---|
215 | for (var i = 0; i < slack.Length; i++) {
|
---|
216 | if (CL[i] && max < slack[i]) max = slack[i];
|
---|
217 | }
|
---|
218 | return max;
|
---|
219 | }
|
---|
220 |
|
---|
221 | private static IEnumerable<int> WhereSlackGreaterOrEqual(IEnumerable<int> locations, double minimum, double[] slack) {
|
---|
222 | foreach (int l in locations) {
|
---|
223 | if (slack[l] >= minimum) yield return l;
|
---|
224 | }
|
---|
225 | }
|
---|
226 | }
|
---|
227 | }
|
---|