1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Threading;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment.Algorithms.Evolutionary {
|
---|
34 | [Item("OSGA (GQAP)", "The algorithm implements a strict offspring selection genetic algorithm (OSGA).")]
|
---|
35 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms)]
|
---|
36 | [StorableClass]
|
---|
37 | public sealed class OSGA : StochasticAlgorithm<OSGAContext, IntegerVectorEncoding> {
|
---|
38 |
|
---|
39 | public override bool SupportsPause {
|
---|
40 | get { return true; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | public override Type ProblemType {
|
---|
44 | get { return typeof(GQAP); }
|
---|
45 | }
|
---|
46 |
|
---|
47 | public new GQAP Problem {
|
---|
48 | get { return (GQAP)base.Problem; }
|
---|
49 | set { base.Problem = value; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | [Storable]
|
---|
53 | private FixedValueParameter<IntValue> populationSizeParameter;
|
---|
54 | public IFixedValueParameter<IntValue> PopulationSizeParameter {
|
---|
55 | get { return populationSizeParameter; }
|
---|
56 | }
|
---|
57 | [Storable]
|
---|
58 | private FixedValueParameter<PercentValue> mutationProbabilityParameter;
|
---|
59 | public IFixedValueParameter<PercentValue> MutationProbabilityParameter {
|
---|
60 | get { return mutationProbabilityParameter; }
|
---|
61 | }
|
---|
62 |
|
---|
63 | public int PopulationSize {
|
---|
64 | get { return populationSizeParameter.Value.Value; }
|
---|
65 | set { populationSizeParameter.Value.Value = value; }
|
---|
66 | }
|
---|
67 | public double MutationProbability {
|
---|
68 | get { return mutationProbabilityParameter.Value.Value; }
|
---|
69 | set { mutationProbabilityParameter.Value.Value = value; }
|
---|
70 | }
|
---|
71 |
|
---|
72 | [StorableConstructor]
|
---|
73 | private OSGA(bool deserializing) : base(deserializing) { }
|
---|
74 | private OSGA(OSGA original, Cloner cloner)
|
---|
75 | : base(original, cloner) {
|
---|
76 | populationSizeParameter = cloner.Clone(original.populationSizeParameter);
|
---|
77 | mutationProbabilityParameter = cloner.Clone(original.mutationProbabilityParameter);
|
---|
78 | }
|
---|
79 | public OSGA() {
|
---|
80 | Parameters.Add(populationSizeParameter = new FixedValueParameter<IntValue>("Population Size", "(μ) The population size.", new IntValue(500)));
|
---|
81 | Parameters.Add(mutationProbabilityParameter = new FixedValueParameter<PercentValue>("Mutation Probability", "The chance for an offspring to get mutated.", new PercentValue(0.05)));
|
---|
82 |
|
---|
83 | Problem = new GQAP();
|
---|
84 | }
|
---|
85 |
|
---|
86 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
87 | return new OSGA(this, cloner);
|
---|
88 | }
|
---|
89 |
|
---|
90 | protected override void Initialize(CancellationToken cancellationToken) {
|
---|
91 | base.Initialize(cancellationToken);
|
---|
92 |
|
---|
93 | Context.Problem = Problem;
|
---|
94 | Context.BestSolution = null;
|
---|
95 |
|
---|
96 | for (var m = 0; m < PopulationSize; m++) {
|
---|
97 | var assign = new IntegerVector(Problem.ProblemInstance.Demands.Length, Context.Random, 0, Problem.ProblemInstance.Capacities.Length);
|
---|
98 | var eval = Problem.ProblemInstance.Evaluate(assign);
|
---|
99 | Context.EvaluatedSolutions++;
|
---|
100 |
|
---|
101 | var ind = new GQAPSolution(assign, eval);
|
---|
102 | var fit = Problem.ProblemInstance.ToSingleObjective(eval);
|
---|
103 | Context.AddToPopulation(Context.ToScope(ind, fit));
|
---|
104 | if (double.IsNaN(Context.BestQuality) || fit < Context.BestQuality) {
|
---|
105 | Context.BestQuality = fit;
|
---|
106 | Context.BestSolution = (GQAPSolution)ind.Clone();
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|
110 | Context.SelectionPressure = 0;
|
---|
111 | Context.Attempts = 0;
|
---|
112 | Context.NextGeneration = new ItemList<ISingleObjectiveSolutionScope<GQAPSolution>>();
|
---|
113 |
|
---|
114 | Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
115 | Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
116 | Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality)));
|
---|
117 | Results.Add(new Result("BestSolution", Context.BestSolution));
|
---|
118 |
|
---|
119 | Context.RunOperator(Analyzer, cancellationToken);
|
---|
120 | }
|
---|
121 |
|
---|
122 | protected override void Run(CancellationToken cancellationToken) {
|
---|
123 | base.Run(cancellationToken);
|
---|
124 | var lastUpdate = ExecutionTime;
|
---|
125 |
|
---|
126 | while (!StoppingCriterion()) {
|
---|
127 |
|
---|
128 | while (!StoppingCriterion() && Context.NextGeneration.Count < PopulationSize
|
---|
129 | && Context.SelectionPressure < 500) {
|
---|
130 |
|
---|
131 | var idx1 = Context.Random.Next(PopulationSize);
|
---|
132 | var idx2 = (idx1 + Context.Random.Next(1, PopulationSize)) % PopulationSize;
|
---|
133 |
|
---|
134 | var p1 = Context.AtPopulation(idx1);
|
---|
135 | var p2 = Context.AtPopulation(idx2);
|
---|
136 |
|
---|
137 | var assign = DiscreteLocationCrossover.Apply(Context.Random,
|
---|
138 | new ItemArray<IntegerVector>(new[] { p1.Solution.Assignment, p2.Solution.Assignment }),
|
---|
139 | Problem.ProblemInstance.Demands, Problem.ProblemInstance.Capacities);
|
---|
140 |
|
---|
141 | if (Context.Random.NextDouble() < MutationProbability) {
|
---|
142 | RelocateEquipmentManipluator.Apply(Context.Random, assign, Problem.ProblemInstance.Capacities.Length, 4.0 / assign.Length);
|
---|
143 | }
|
---|
144 |
|
---|
145 | var eval = Problem.ProblemInstance.Evaluate(assign);
|
---|
146 | Context.EvaluatedSolutions++;
|
---|
147 |
|
---|
148 | var offspring = new GQAPSolution(assign, eval);
|
---|
149 |
|
---|
150 | var fit = Problem.ProblemInstance.ToSingleObjective(offspring.Evaluation);
|
---|
151 | if (fit < p1.Fitness && fit < p2.Fitness) { // strict OS
|
---|
152 | Context.NextGeneration.Add(Context.ToScope(offspring, fit));
|
---|
153 |
|
---|
154 | if (fit < Context.BestQuality) {
|
---|
155 | Context.BestQuality = fit;
|
---|
156 | Context.BestSolution = (GQAPSolution)offspring.Clone();
|
---|
157 | }
|
---|
158 | }
|
---|
159 |
|
---|
160 | Context.SelectionPressure += 1.0 / PopulationSize;
|
---|
161 | Context.Attempts++;
|
---|
162 | if (Context.SelectionPressure > 1
|
---|
163 | && Context.NextGeneration.Count / (double)PopulationSize < Context.SelectionPressure / 500)
|
---|
164 | break;
|
---|
165 | if (cancellationToken.IsCancellationRequested) return;
|
---|
166 | }
|
---|
167 |
|
---|
168 | var restart = Context.NextGeneration.Count < PopulationSize;
|
---|
169 |
|
---|
170 | if (restart) {
|
---|
171 | var best = Context.Population.Concat(Context.NextGeneration)
|
---|
172 | .OrderBy(x => x.Fitness).Take(PopulationSize).ToList();
|
---|
173 | Context.ReplacePopulation(best);
|
---|
174 | } else {
|
---|
175 | Context.ReplacePopulation(Context.NextGeneration);
|
---|
176 | }
|
---|
177 | Context.NextGeneration.Clear();
|
---|
178 |
|
---|
179 | IResult result;
|
---|
180 | if (ExecutionTime - lastUpdate > TimeSpan.FromSeconds(1)) {
|
---|
181 | if (Results.TryGetValue("Iterations", out result))
|
---|
182 | ((IntValue)result.Value).Value = Context.Iterations;
|
---|
183 | else Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
184 | if (Results.TryGetValue("EvaluatedSolutions", out result))
|
---|
185 | ((IntValue)result.Value).Value = Context.EvaluatedSolutions;
|
---|
186 | else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
187 | lastUpdate = ExecutionTime;
|
---|
188 | }
|
---|
189 | if (Results.TryGetValue("BestQuality", out result))
|
---|
190 | ((DoubleValue)result.Value).Value = Context.BestQuality;
|
---|
191 | else Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality)));
|
---|
192 | if (Results.TryGetValue("BestSolution", out result))
|
---|
193 | result.Value = Context.BestSolution;
|
---|
194 | else Results.Add(new Result("BestSolution", Context.BestSolution));
|
---|
195 |
|
---|
196 | try {
|
---|
197 | Context.RunOperator(Analyzer, cancellationToken);
|
---|
198 | } catch (OperationCanceledException) { }
|
---|
199 |
|
---|
200 | Context.Iterations++;
|
---|
201 |
|
---|
202 | if (restart) {
|
---|
203 | var seed = Context.Population.Select(x => (IntegerVector)x.Solution.Assignment.Clone()).ToList();
|
---|
204 | for (var s = 0; s < seed.Count; s++) {
|
---|
205 | RelocateEquipmentManipluator.Apply(Context.Random, seed[s], Problem.ProblemInstance.Capacities.Length, 0.0);
|
---|
206 | var eval = Problem.ProblemInstance.Evaluate(seed[s]);
|
---|
207 | Context.EvaluatedSolutions++;
|
---|
208 | var fit = Problem.ProblemInstance.ToSingleObjective(eval);
|
---|
209 | Context.NextGeneration.Add(Context.ToScope(new GQAPSolution(seed[s], eval), fit));
|
---|
210 | }
|
---|
211 | Context.ReplacePopulation(Context.NextGeneration);
|
---|
212 | Context.NextGeneration.Clear();
|
---|
213 | }
|
---|
214 | Context.SelectionPressure = 0;
|
---|
215 |
|
---|
216 | if (cancellationToken.IsCancellationRequested) break;
|
---|
217 | }
|
---|
218 | IResult result2;
|
---|
219 | if (Results.TryGetValue("Iterations", out result2))
|
---|
220 | ((IntValue)result2.Value).Value = Context.Iterations;
|
---|
221 | else Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
222 | if (Results.TryGetValue("EvaluatedSolutions", out result2))
|
---|
223 | ((IntValue)result2.Value).Value = Context.EvaluatedSolutions;
|
---|
224 | else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
225 | }
|
---|
226 | }
|
---|
227 | }
|
---|