[15564] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using System.Threading;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment.Algorithms.Evolutionary {
|
---|
| 34 | [Item("OSGA (GQAP)", "The algorithm implements a strict offspring selection genetic algorithm (OSGA).")]
|
---|
| 35 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms)]
|
---|
| 36 | [StorableClass]
|
---|
[15572] | 37 | public sealed class OSGA : StochasticAlgorithm<OSGAContext, IntegerVectorEncoding> {
|
---|
[15564] | 38 |
|
---|
| 39 | public override bool SupportsPause {
|
---|
| 40 | get { return true; }
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | public override Type ProblemType {
|
---|
| 44 | get { return typeof(GQAP); }
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | public new GQAP Problem {
|
---|
| 48 | get { return (GQAP)base.Problem; }
|
---|
| 49 | set { base.Problem = value; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | [Storable]
|
---|
| 53 | private FixedValueParameter<IntValue> populationSizeParameter;
|
---|
| 54 | public IFixedValueParameter<IntValue> PopulationSizeParameter {
|
---|
| 55 | get { return populationSizeParameter; }
|
---|
| 56 | }
|
---|
| 57 | [Storable]
|
---|
| 58 | private FixedValueParameter<PercentValue> mutationProbabilityParameter;
|
---|
| 59 | public IFixedValueParameter<PercentValue> MutationProbabilityParameter {
|
---|
| 60 | get { return mutationProbabilityParameter; }
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public int PopulationSize {
|
---|
| 64 | get { return populationSizeParameter.Value.Value; }
|
---|
| 65 | set { populationSizeParameter.Value.Value = value; }
|
---|
| 66 | }
|
---|
| 67 | public double MutationProbability {
|
---|
| 68 | get { return mutationProbabilityParameter.Value.Value; }
|
---|
| 69 | set { mutationProbabilityParameter.Value.Value = value; }
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | [StorableConstructor]
|
---|
| 73 | private OSGA(bool deserializing) : base(deserializing) { }
|
---|
| 74 | private OSGA(OSGA original, Cloner cloner)
|
---|
| 75 | : base(original, cloner) {
|
---|
| 76 | populationSizeParameter = cloner.Clone(original.populationSizeParameter);
|
---|
| 77 | mutationProbabilityParameter = cloner.Clone(original.mutationProbabilityParameter);
|
---|
| 78 | }
|
---|
| 79 | public OSGA() {
|
---|
| 80 | Parameters.Add(populationSizeParameter = new FixedValueParameter<IntValue>("Population Size", "(μ) The population size.", new IntValue(500)));
|
---|
| 81 | Parameters.Add(mutationProbabilityParameter = new FixedValueParameter<PercentValue>("Mutation Probability", "The chance for an offspring to get mutated.", new PercentValue(0.05)));
|
---|
| 82 |
|
---|
| 83 | Problem = new GQAP();
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 87 | return new OSGA(this, cloner);
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | protected override void Initialize(CancellationToken cancellationToken) {
|
---|
| 91 | base.Initialize(cancellationToken);
|
---|
| 92 |
|
---|
| 93 | Context.Problem = Problem;
|
---|
| 94 | Context.BestSolution = null;
|
---|
| 95 |
|
---|
| 96 | for (var m = 0; m < PopulationSize; m++) {
|
---|
| 97 | var assign = new IntegerVector(Problem.ProblemInstance.Demands.Length, Context.Random, 0, Problem.ProblemInstance.Capacities.Length);
|
---|
| 98 | var eval = Problem.ProblemInstance.Evaluate(assign);
|
---|
| 99 | Context.EvaluatedSolutions++;
|
---|
| 100 |
|
---|
| 101 | var ind = new GQAPSolution(assign, eval);
|
---|
| 102 | var fit = Problem.ProblemInstance.ToSingleObjective(eval);
|
---|
| 103 | Context.AddToPopulation(Context.ToScope(ind, fit));
|
---|
| 104 | if (double.IsNaN(Context.BestQuality) || fit < Context.BestQuality) {
|
---|
| 105 | Context.BestQuality = fit;
|
---|
| 106 | Context.BestSolution = (GQAPSolution)ind.Clone();
|
---|
| 107 | }
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | Context.SelectionPressure = 0;
|
---|
| 111 | Context.Attempts = 0;
|
---|
| 112 | Context.NextGeneration = new ItemList<ISingleObjectiveSolutionScope<GQAPSolution>>();
|
---|
| 113 |
|
---|
| 114 | Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
| 115 | Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
| 116 | Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality)));
|
---|
| 117 | Results.Add(new Result("BestSolution", Context.BestSolution));
|
---|
| 118 |
|
---|
[15574] | 119 | Context.RunOperator(Analyzer, cancellationToken);
|
---|
[15564] | 120 | }
|
---|
| 121 |
|
---|
| 122 | protected override void Run(CancellationToken cancellationToken) {
|
---|
[15700] | 123 | base.Run(cancellationToken);
|
---|
[15564] | 124 | var lastUpdate = ExecutionTime;
|
---|
| 125 |
|
---|
| 126 | while (!StoppingCriterion()) {
|
---|
| 127 |
|
---|
| 128 | while (!StoppingCriterion() && Context.NextGeneration.Count < PopulationSize
|
---|
[15572] | 129 | && Context.SelectionPressure < 500) {
|
---|
[15564] | 130 |
|
---|
| 131 | var idx1 = Context.Random.Next(PopulationSize);
|
---|
| 132 | var idx2 = (idx1 + Context.Random.Next(1, PopulationSize)) % PopulationSize;
|
---|
| 133 |
|
---|
| 134 | var p1 = Context.AtPopulation(idx1);
|
---|
| 135 | var p2 = Context.AtPopulation(idx2);
|
---|
| 136 |
|
---|
| 137 | var assign = DiscreteLocationCrossover.Apply(Context.Random,
|
---|
| 138 | new ItemArray<IntegerVector>(new[] { p1.Solution.Assignment, p2.Solution.Assignment }),
|
---|
| 139 | Problem.ProblemInstance.Demands, Problem.ProblemInstance.Capacities);
|
---|
| 140 |
|
---|
| 141 | if (Context.Random.NextDouble() < MutationProbability) {
|
---|
| 142 | RelocateEquipmentManipluator.Apply(Context.Random, assign, Problem.ProblemInstance.Capacities.Length, 4.0 / assign.Length);
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | var eval = Problem.ProblemInstance.Evaluate(assign);
|
---|
| 146 | Context.EvaluatedSolutions++;
|
---|
| 147 |
|
---|
| 148 | var offspring = new GQAPSolution(assign, eval);
|
---|
| 149 |
|
---|
| 150 | var fit = Problem.ProblemInstance.ToSingleObjective(offspring.Evaluation);
|
---|
| 151 | if (fit < p1.Fitness && fit < p2.Fitness) { // strict OS
|
---|
| 152 | Context.NextGeneration.Add(Context.ToScope(offspring, fit));
|
---|
| 153 |
|
---|
| 154 | if (fit < Context.BestQuality) {
|
---|
| 155 | Context.BestQuality = fit;
|
---|
| 156 | Context.BestSolution = (GQAPSolution)offspring.Clone();
|
---|
| 157 | }
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | Context.SelectionPressure += 1.0 / PopulationSize;
|
---|
| 161 | Context.Attempts++;
|
---|
[15572] | 162 | if (Context.SelectionPressure > 1
|
---|
| 163 | && Context.NextGeneration.Count / (double)PopulationSize < Context.SelectionPressure / 500)
|
---|
[15564] | 164 | break;
|
---|
| 165 | if (cancellationToken.IsCancellationRequested) return;
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | var restart = Context.NextGeneration.Count < PopulationSize;
|
---|
| 169 |
|
---|
| 170 | if (restart) {
|
---|
| 171 | var best = Context.Population.Concat(Context.NextGeneration)
|
---|
| 172 | .OrderBy(x => x.Fitness).Take(PopulationSize).ToList();
|
---|
| 173 | Context.ReplacePopulation(best);
|
---|
| 174 | } else {
|
---|
| 175 | Context.ReplacePopulation(Context.NextGeneration);
|
---|
| 176 | }
|
---|
| 177 | Context.NextGeneration.Clear();
|
---|
| 178 |
|
---|
| 179 | IResult result;
|
---|
| 180 | if (ExecutionTime - lastUpdate > TimeSpan.FromSeconds(1)) {
|
---|
| 181 | if (Results.TryGetValue("Iterations", out result))
|
---|
| 182 | ((IntValue)result.Value).Value = Context.Iterations;
|
---|
| 183 | else Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
| 184 | if (Results.TryGetValue("EvaluatedSolutions", out result))
|
---|
| 185 | ((IntValue)result.Value).Value = Context.EvaluatedSolutions;
|
---|
| 186 | else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
| 187 | lastUpdate = ExecutionTime;
|
---|
| 188 | }
|
---|
| 189 | if (Results.TryGetValue("BestQuality", out result))
|
---|
| 190 | ((DoubleValue)result.Value).Value = Context.BestQuality;
|
---|
| 191 | else Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality)));
|
---|
| 192 | if (Results.TryGetValue("BestSolution", out result))
|
---|
| 193 | result.Value = Context.BestSolution;
|
---|
| 194 | else Results.Add(new Result("BestSolution", Context.BestSolution));
|
---|
| 195 |
|
---|
| 196 | try {
|
---|
[15574] | 197 | Context.RunOperator(Analyzer, cancellationToken);
|
---|
[15564] | 198 | } catch (OperationCanceledException) { }
|
---|
| 199 |
|
---|
| 200 | Context.Iterations++;
|
---|
| 201 |
|
---|
| 202 | if (restart) {
|
---|
| 203 | var seed = Context.Population.Select(x => (IntegerVector)x.Solution.Assignment.Clone()).ToList();
|
---|
| 204 | for (var s = 0; s < seed.Count; s++) {
|
---|
| 205 | RelocateEquipmentManipluator.Apply(Context.Random, seed[s], Problem.ProblemInstance.Capacities.Length, 0.0);
|
---|
| 206 | var eval = Problem.ProblemInstance.Evaluate(seed[s]);
|
---|
| 207 | Context.EvaluatedSolutions++;
|
---|
| 208 | var fit = Problem.ProblemInstance.ToSingleObjective(eval);
|
---|
| 209 | Context.NextGeneration.Add(Context.ToScope(new GQAPSolution(seed[s], eval), fit));
|
---|
| 210 | }
|
---|
| 211 | Context.ReplacePopulation(Context.NextGeneration);
|
---|
| 212 | Context.NextGeneration.Clear();
|
---|
| 213 | }
|
---|
| 214 | Context.SelectionPressure = 0;
|
---|
| 215 |
|
---|
| 216 | if (cancellationToken.IsCancellationRequested) break;
|
---|
| 217 | }
|
---|
| 218 | IResult result2;
|
---|
| 219 | if (Results.TryGetValue("Iterations", out result2))
|
---|
| 220 | ((IntValue)result2.Value).Value = Context.Iterations;
|
---|
| 221 | else Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
| 222 | if (Results.TryGetValue("EvaluatedSolutions", out result2))
|
---|
| 223 | ((IntValue)result2.Value).Value = Context.EvaluatedSolutions;
|
---|
| 224 | else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
| 225 | }
|
---|
| 226 | }
|
---|
| 227 | }
|
---|