1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading.Tasks;
|
---|
26 | using HeuristicLab.Analysis;
|
---|
27 | using HeuristicLab.Common.Resources;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.MainForm;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using HeuristicLab.OptimizationExpertSystem.Common;
|
---|
33 | using HeuristicLab.PluginInfrastructure;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.OptimizationExpertSystem {
|
---|
36 | [View("Performance Modeling View")]
|
---|
37 | [Content(typeof(KnowledgeCenter), IsDefaultView = false)]
|
---|
38 | public partial class PerformanceModelingView : KnowledgeCenterViewBase {
|
---|
39 | private readonly CheckedItemList<StringValue> characteristics;
|
---|
40 |
|
---|
41 | public PerformanceModelingView() {
|
---|
42 | InitializeComponent();
|
---|
43 | characteristics = new CheckedItemList<StringValue>();
|
---|
44 | characteristics.CheckedItemsChanged += CharacteristicsOnCheckedItemsChanged;
|
---|
45 | characteristicsViewHost.Content = characteristics;
|
---|
46 | recommendStartButton.Text = string.Empty;
|
---|
47 | recommendStartButton.Image = VSImageLibrary.Play;
|
---|
48 | refreshCharacteristicsButton.Text = string.Empty;
|
---|
49 | refreshCharacteristicsButton.Image = VSImageLibrary.Refresh;
|
---|
50 | UpdateRecommenderCombobox();
|
---|
51 | }
|
---|
52 |
|
---|
53 | protected override void OnContentChanged() {
|
---|
54 | base.OnContentChanged();
|
---|
55 | if (Content == null) {
|
---|
56 | minTargetView.Content = null;
|
---|
57 | } else {
|
---|
58 | minTargetView.Content = Content.MinimumTarget;
|
---|
59 | }
|
---|
60 | UpdateCharacteristics();
|
---|
61 | UpdateTopNCombobox();
|
---|
62 | }
|
---|
63 |
|
---|
64 | protected override void SetEnabledStateOfControls() {
|
---|
65 | base.SetEnabledStateOfControls();
|
---|
66 | // TODO: up/download state
|
---|
67 | recommendStartButton.Enabled = Content != null && recommenderComboBox.SelectedIndex >= 0 && characteristics.CheckedItems.Any();
|
---|
68 | characteristicsViewHost.Enabled = Content != null;
|
---|
69 | xValidateButton.Enabled = Content != null && recommenderComboBox.SelectedIndex >= 0 && characteristics.CheckedItems.Any() && topNComboBox.SelectedIndex >= 0;
|
---|
70 | }
|
---|
71 |
|
---|
72 | #region Update Controls
|
---|
73 | private void UpdateRecommenderCombobox() {
|
---|
74 | if (InvokeRequired) { Invoke((Action)UpdateRecommenderCombobox); return; }
|
---|
75 | var prevSelection = (IAlgorithmInstanceRecommender)recommenderComboBox.SelectedItem;
|
---|
76 | var prevNewIndex = -1;
|
---|
77 | recommenderComboBox.Items.Clear();
|
---|
78 |
|
---|
79 | var i = 0;
|
---|
80 | foreach (var rcmd in ApplicationManager.Manager.GetInstances<IAlgorithmInstanceRecommender>()) {
|
---|
81 | recommenderComboBox.Items.Add(rcmd);
|
---|
82 | if (prevSelection == null || rcmd.GetType() == prevSelection.GetType())
|
---|
83 | prevNewIndex = prevSelection == null ? 0 : i;
|
---|
84 | i++;
|
---|
85 | }
|
---|
86 |
|
---|
87 | recommenderComboBox.SelectedIndex = prevNewIndex;
|
---|
88 | }
|
---|
89 |
|
---|
90 | private void UpdateCharacteristics() {
|
---|
91 | if (InvokeRequired) { Invoke((Action)UpdateCharacteristics); return; }
|
---|
92 |
|
---|
93 | var @checked = new HashSet<string>(characteristics.CheckedItems.Select(x => x.Value.Value));
|
---|
94 | if (@checked.Count == 0 && Content.ProblemInstances.ResultNames.Any(x => x.StartsWith("Characteristic.")))
|
---|
95 | @checked = new HashSet<string>(Content.ProblemInstances.ResultNames.Where(x => x.StartsWith("Characteristic.")));
|
---|
96 |
|
---|
97 | characteristics.Clear();
|
---|
98 | if (Content == null || Content.ProblemInstances.Count == 0) return;
|
---|
99 |
|
---|
100 | foreach (var c in Content.ProblemInstances.ResultNames) {
|
---|
101 | characteristics.Add(new StringValue(c), @checked.Contains(c));
|
---|
102 | }
|
---|
103 | }
|
---|
104 |
|
---|
105 | private void UpdateTopNCombobox() {
|
---|
106 | if (InvokeRequired) { Invoke((Action)UpdateTopNCombobox); return; }
|
---|
107 |
|
---|
108 | int selected = 3;
|
---|
109 | if (topNComboBox.SelectedIndex >= 0) selected = (int)topNComboBox.SelectedItem;
|
---|
110 | topNComboBox.Items.Clear();
|
---|
111 | if (Content == null) return;
|
---|
112 |
|
---|
113 | var algInstances = Content.AlgorithmInstances.Count;
|
---|
114 | for (var i = 1; i <= algInstances; i++) {
|
---|
115 | topNComboBox.Items.Add(i);
|
---|
116 | }
|
---|
117 | topNComboBox.SelectedIndex = Math.Min(selected, topNComboBox.Items.Count) - 1;
|
---|
118 | }
|
---|
119 | #endregion
|
---|
120 |
|
---|
121 | #region Content Event Handlers
|
---|
122 | protected override void OnProblemInstancesChanged() {
|
---|
123 | base.OnProblemInstancesChanged();
|
---|
124 | UpdateCharacteristics();
|
---|
125 | SetEnabledStateOfControls();
|
---|
126 | }
|
---|
127 |
|
---|
128 | protected override void OnAlgorithmInstancesChanged() {
|
---|
129 | base.OnAlgorithmInstancesChanged();
|
---|
130 | UpdateTopNCombobox();
|
---|
131 | }
|
---|
132 | #endregion
|
---|
133 |
|
---|
134 | #region Control Event Handlers
|
---|
135 | private void RecommenderComboBoxOnSelectedIndexChanged(object sender, EventArgs e) {
|
---|
136 | if (InvokeRequired) { Invoke((Action<object, EventArgs>)RecommenderComboBoxOnSelectedIndexChanged, sender, e); return; }
|
---|
137 | var rcmd = (IAlgorithmInstanceRecommender)recommenderComboBox.SelectedItem;
|
---|
138 | parameterCollectionView.Content = rcmd != null ? rcmd.Parameters : null;
|
---|
139 | SetEnabledStateOfControls();
|
---|
140 | }
|
---|
141 |
|
---|
142 | private void RecommendStartButtonOnClick(object sender, EventArgs e) {
|
---|
143 | var rcmd = (IAlgorithmInstanceRecommender)recommenderComboBox.SelectedItem;
|
---|
144 | var trainingSet = Content.ProblemInstances.Where(x => !Content.IsCurrentInstance(x)).ToArray();
|
---|
145 | Content.RecommendationModel = rcmd.TrainModel(trainingSet, Content, characteristics.CheckedItems.Select(x => x.Value.Value).ToArray());
|
---|
146 | }
|
---|
147 |
|
---|
148 | private void RefreshCharacteristicsButtonOnClick(object sender, EventArgs e) {
|
---|
149 | UpdateCharacteristics();
|
---|
150 | SetEnabledStateOfControls();
|
---|
151 | }
|
---|
152 |
|
---|
153 | private void xValidateButton_Click(object sender, EventArgs e) {
|
---|
154 | var recommender = (IAlgorithmInstanceRecommender)recommenderComboBox.SelectedItem;
|
---|
155 | var progress = MainForm.AddOperationProgressToView(this, "Performing Leave-one-out Crossvalidation");
|
---|
156 | var topN = (int)topNComboBox.SelectedItem;
|
---|
157 | Task.Factory.StartNew(() => { DoCrossvalidate(recommender, topN, progress); }, TaskCreationOptions.LongRunning);
|
---|
158 | }
|
---|
159 |
|
---|
160 | private void topNComboBox_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
161 | SetEnabledStateOfControls();
|
---|
162 | }
|
---|
163 | #endregion
|
---|
164 |
|
---|
165 | #region Other Event Handlers
|
---|
166 | private void CharacteristicsOnCheckedItemsChanged(object sender, EventArgs e) {
|
---|
167 | SetEnabledStateOfControls();
|
---|
168 | }
|
---|
169 | #endregion
|
---|
170 |
|
---|
171 | private void DoCrossvalidate(IAlgorithmInstanceRecommender recommender, int topN, IProgress progress) {
|
---|
172 | try {
|
---|
173 | var features = characteristics.CheckedItems.Select(x => x.Value.Value).ToArray();
|
---|
174 | var trainingSet = Content.ProblemInstances.Where(x => !Content.IsCurrentInstance(x)).ToArray();
|
---|
175 |
|
---|
176 | var absErr = 0.0;
|
---|
177 | var absErrCnt = 0;
|
---|
178 | var absLogErr = 0.0;
|
---|
179 | var absLogErrCnt = 0;
|
---|
180 | var confMatrix = new int[1, 6];
|
---|
181 | var tau = 0.0;
|
---|
182 | var tauCnt = 0;
|
---|
183 | var rho = 0.0;
|
---|
184 | var rhoCnt = 0;
|
---|
185 | var ndcg = 0.0;
|
---|
186 | var ndcgCnt = 0;
|
---|
187 | // leave one out crossvalidation
|
---|
188 | var count = 0;
|
---|
189 | foreach (var pi in trainingSet) {
|
---|
190 | var observed = Content.GetAlgorithmPerformanceLog10(pi);
|
---|
191 | if (observed.Count == 0) continue;
|
---|
192 | progress.Status = pi.Name + "...";
|
---|
193 | var model = recommender.TrainModel(trainingSet.Where(x => x != pi).ToArray(), Content, features);
|
---|
194 | var predictedTopN = model.GetRanking(pi).Take(topN).ToDictionary(x => x.Key, x => Math.Log10(x.Value));
|
---|
195 | var predicted = model.GetRanking(pi).ToDictionary(x => x.Key, x => Math.Log10(x.Value));
|
---|
196 | var ae = AbsoluteError(observed, predictedTopN);
|
---|
197 | if (!double.IsNaN(ae)) {
|
---|
198 | absErr += ae; // in case we only predicted instances that have not been observed
|
---|
199 | absErrCnt++;
|
---|
200 | }
|
---|
201 | var ale = AbsoluteLogError(observed, predictedTopN);
|
---|
202 | if (!double.IsNaN(ale)) {
|
---|
203 | absLogErr += ale; // in case we only predicted instances that have not been observed
|
---|
204 | absLogErrCnt++;
|
---|
205 | }
|
---|
206 | var confMat = ConfusionMatrix(observed, predictedTopN);
|
---|
207 | for (var i = 0; i < confMat.Length; i++) {
|
---|
208 | confMatrix[0, i] += confMat[i];
|
---|
209 | }
|
---|
210 | var kt = KendallsTau(observed, predicted);
|
---|
211 | if (!double.IsNaN(kt) && !double.IsInfinity(kt)) {
|
---|
212 | tau += kt;
|
---|
213 | tauCnt++;
|
---|
214 | }
|
---|
215 | var sr = SpearmansRho(observed, predicted);
|
---|
216 | if (!double.IsNaN(sr)) {
|
---|
217 | rho += sr;
|
---|
218 | rhoCnt++;
|
---|
219 | }
|
---|
220 | var gain = NDCG(observed, model.GetRanking(pi).Take(topN).Select(x => x.Key).ToList());
|
---|
221 | if (!double.IsNaN(gain)) {
|
---|
222 | ndcg += gain;
|
---|
223 | ndcgCnt++;
|
---|
224 | }
|
---|
225 | progress.ProgressValue = ++count / (double)trainingSet.Length;
|
---|
226 | }
|
---|
227 | absErr /= absErrCnt;
|
---|
228 | absLogErr /= absLogErrCnt;
|
---|
229 | tau /= tauCnt;
|
---|
230 | rho /= rhoCnt;
|
---|
231 | ndcg /= ndcgCnt;
|
---|
232 |
|
---|
233 | absoluteErrorView.Content = new DoubleValue(absErr);
|
---|
234 | absoluteLogErrorView.Content = new DoubleValue(absLogErr);
|
---|
235 | var description = new[] {"A", "B", "C", "D", "E", "F"};
|
---|
236 | confusionMatrixView.Content = new IntMatrix(confMatrix) {ColumnNames = description};
|
---|
237 | kendallsTauView.Content = new DoubleValue(tau);
|
---|
238 | spearmansRhoView.Content = new DoubleValue(rho);
|
---|
239 | ncdgView.Content = new DoubleValue(ndcg);
|
---|
240 | } finally { progress.Finish(); }
|
---|
241 | }
|
---|
242 |
|
---|
243 | private static double AbsoluteError(Dictionary<IAlgorithm, double> performance, Dictionary<IAlgorithm, double> ranking) {
|
---|
244 | var error = 0.0;
|
---|
245 | var count = 0;
|
---|
246 | foreach (var tuple in ranking) {
|
---|
247 | double actual;
|
---|
248 | if (!performance.TryGetValue(tuple.Key, out actual)) continue;
|
---|
249 | if (double.IsInfinity(actual)) actual = Math.Log10(int.MaxValue);
|
---|
250 | error += Math.Abs(Math.Pow(10, actual) - Math.Pow(10, tuple.Value));
|
---|
251 | count++;
|
---|
252 | }
|
---|
253 | return error / count;
|
---|
254 | }
|
---|
255 |
|
---|
256 | private static double AbsoluteLogError(Dictionary<IAlgorithm, double> performance, Dictionary<IAlgorithm, double> ranking) {
|
---|
257 | var error = 0.0;
|
---|
258 | var count = 0;
|
---|
259 | foreach (var tuple in ranking) {
|
---|
260 | double actual;
|
---|
261 | if (!performance.TryGetValue(tuple.Key, out actual)) continue;
|
---|
262 | if (double.IsInfinity(actual)) actual = Math.Log10(int.MaxValue);
|
---|
263 | error += Math.Abs(actual - tuple.Value);
|
---|
264 | count++;
|
---|
265 | }
|
---|
266 | return error / count;
|
---|
267 | }
|
---|
268 |
|
---|
269 | private static int[] ConfusionMatrix(Dictionary<IAlgorithm, double> performance, Dictionary<IAlgorithm, double> ranking) {
|
---|
270 | var confMatrix = new int[6];
|
---|
271 | var clusteredPerformance = ClusteringHelper<IAlgorithm>.Cluster(5, performance, a => double.IsInfinity(a.Value)).GetByInstance().ToDictionary(x => x.Key, x => x.Value.Item2);
|
---|
272 |
|
---|
273 | foreach (var cr in ranking) {
|
---|
274 | int realRank;
|
---|
275 | if (!clusteredPerformance.TryGetValue(cr.Key, out realRank)) continue;
|
---|
276 | confMatrix[realRank]++;
|
---|
277 | }
|
---|
278 | return confMatrix;
|
---|
279 | }
|
---|
280 |
|
---|
281 | private static double SpearmansRho(Dictionary<IAlgorithm, double> performance, Dictionary<IAlgorithm, double> ranking) {
|
---|
282 | var commonKeys = performance.Keys.Intersect(ranking.Keys).ToList();
|
---|
283 | var n = commonKeys.Count;
|
---|
284 | if (n == 0) return double.NaN;
|
---|
285 |
|
---|
286 | var actualRanks = commonKeys.Select((x, i) => new { Alg = x, Index = i, Perf = performance[x] })
|
---|
287 | .OrderBy(x => x.Perf).Select((x, i) => new { Index = x.Index, Rank = double.IsPositiveInfinity(x.Perf) ? int.MaxValue : i })
|
---|
288 | .OrderBy(x => x.Index).Select(x => (double)x.Rank).ToArray();
|
---|
289 | var predictedRanks = commonKeys.Select((x, i) => new { Alg = x, Index = i, Perf = ranking[x] })
|
---|
290 | .OrderBy(x => x.Perf).Select((x, i) => new { Index = x.Index, Rank = double.IsPositiveInfinity(x.Perf) ? int.MaxValue : i })
|
---|
291 | .OrderBy(x => x.Index).Select(x => (double)x.Rank).ToArray();
|
---|
292 |
|
---|
293 | return alglib.spearmancorr2(actualRanks, predictedRanks);
|
---|
294 | }
|
---|
295 |
|
---|
296 | private static double KendallsTau(Dictionary<IAlgorithm, double> performance, Dictionary<IAlgorithm, double> ranking) {
|
---|
297 | var commonKeys = performance.Keys.Intersect(ranking.Keys).ToList();
|
---|
298 | var n = commonKeys.Count;
|
---|
299 | if (n == 0) return double.NaN;
|
---|
300 |
|
---|
301 | var actualRanks = commonKeys.Select((x, i) => new { Alg = x, Index = i, Perf = performance[x] })
|
---|
302 | .OrderBy(x => x.Perf).Select((x, i) => new { Index = x.Index, Rank = double.IsPositiveInfinity(x.Perf) ? int.MaxValue : i })
|
---|
303 | .OrderBy(x => x.Index).Select(x => x.Rank).ToList();
|
---|
304 | var predictedRanks = commonKeys.Select((x, i) => new { Alg = x, Index = i, Perf = ranking[x] })
|
---|
305 | .OrderBy(x => x.Perf).Select((x, i) => new { Index = x.Index, Rank = double.IsPositiveInfinity(x.Perf) ? int.MaxValue : i })
|
---|
306 | .OrderBy(x => x.Index).Select(x => x.Rank).ToList();
|
---|
307 |
|
---|
308 | var paired = actualRanks.Zip(predictedRanks, (a, p) => new { Actual = a, Predicted = p }).ToList();
|
---|
309 | var concordant = 0;
|
---|
310 | var discordant = 0;
|
---|
311 | for (var i = 0; i < paired.Count - 1; i++)
|
---|
312 | for (var j = i + 1; j < paired.Count; j++) {
|
---|
313 | if (paired[i].Actual > paired[j].Actual && paired[i].Predicted > paired[j].Predicted
|
---|
314 | || paired[i].Actual < paired[j].Actual && paired[i].Predicted < paired[j].Predicted)
|
---|
315 | concordant++;
|
---|
316 | else if (paired[i].Actual > paired[j].Actual && paired[i].Predicted < paired[j].Predicted
|
---|
317 | || paired[i].Actual < paired[j].Actual && paired[i].Predicted > paired[j].Predicted)
|
---|
318 | discordant++;
|
---|
319 | }
|
---|
320 |
|
---|
321 | var ti = performance.GroupBy(x => x.Value).Sum(x => x.Count() * (x.Count() - 1));
|
---|
322 | var uj = ranking.GroupBy(x => x.Value).Sum(x => x.Count() * (x.Count() - 1));
|
---|
323 | return (2.0 * (concordant - discordant)) / Math.Sqrt( (n * (n - 1) - ti * (ti - 1)) * (n * (n - 1) - uj * (uj - 1)) );
|
---|
324 | }
|
---|
325 |
|
---|
326 | private static double NDCG(Dictionary<IAlgorithm, double> performance, List<IAlgorithm> ranking) {
|
---|
327 | var k = 5;
|
---|
328 | var relevance = ClusteringHelper<IAlgorithm>.Cluster(k, performance, a => double.IsInfinity(a.Value)).GetByInstance().ToDictionary(x => x.Key, x => k - x.Value.Item2);
|
---|
329 |
|
---|
330 | var i = 0;
|
---|
331 | var dcgp = 0.0;
|
---|
332 | for (; i < ranking.Count; i++) {
|
---|
333 | int rel;
|
---|
334 | if (!relevance.TryGetValue(ranking[i], out rel))
|
---|
335 | continue;
|
---|
336 | dcgp = rel;
|
---|
337 | i++;
|
---|
338 | break;
|
---|
339 | }
|
---|
340 | for (; i < ranking.Count; i++) {
|
---|
341 | int rel;
|
---|
342 | if (!relevance.TryGetValue(ranking[i], out rel))
|
---|
343 | continue;
|
---|
344 | dcgp += rel / Math.Log(i + 1, 2);
|
---|
345 | }
|
---|
346 | var ideal = relevance.Select(x => x.Value).OrderByDescending(x => x).Take(ranking.Count).ToArray();
|
---|
347 | double idcgp = ideal[0];
|
---|
348 | for (i = 1; i < ideal.Length; i++)
|
---|
349 | idcgp += ideal[i] / Math.Log(i + 1, 2);
|
---|
350 |
|
---|
351 | return dcgp / idcgp;
|
---|
352 | }
|
---|
353 | }
|
---|
354 | }
|
---|