1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Analysis;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using System;
|
---|
30 | using System.Collections.Generic;
|
---|
31 | using System.Linq;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.OptimizationExpertSystem.Common {
|
---|
34 | [Item("Distance Weighted Recommender", "")]
|
---|
35 | [StorableClass]
|
---|
36 | public class DistanceWeightedRecommender : ParameterizedNamedItem, IAlgorithmInstanceRecommender {
|
---|
37 |
|
---|
38 | private IFixedValueParameter<DoubleValue> NeighborhoodFactorParameter {
|
---|
39 | get { return (IFixedValueParameter<DoubleValue>)Parameters["NeighborhoodFactor"]; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | public double NeighborhoodFactor {
|
---|
43 | get { return NeighborhoodFactorParameter.Value.Value; }
|
---|
44 | set { NeighborhoodFactorParameter.Value.Value = value; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | [StorableConstructor]
|
---|
48 | private DistanceWeightedRecommender(bool deserializing) : base(deserializing) { }
|
---|
49 | private DistanceWeightedRecommender(DistanceWeightedRecommender original, Cloner cloner)
|
---|
50 | : base(original, cloner) { }
|
---|
51 | public DistanceWeightedRecommender() {
|
---|
52 | Parameters.Add(new FixedValueParameter<DoubleValue>("NeighborhoodFactor", "Penalize neighbors that are far away.", new DoubleValue(5)));
|
---|
53 | }
|
---|
54 |
|
---|
55 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
56 | return new DistanceWeightedRecommender(this, cloner);
|
---|
57 | }
|
---|
58 |
|
---|
59 | public IRecommendationModel TrainModel(IRun[] problemInstances, KnowledgeCenter okc, string[] characteristics) {
|
---|
60 | var piDistances = okc.GetProblemDistances(characteristics);
|
---|
61 | var maxDist = piDistances.Max(x => x.Value);
|
---|
62 | var instances = new SortedList<double, IAlgorithm>();
|
---|
63 | foreach (var relevantRuns in okc.GetKnowledgeBaseByAlgorithm()) {
|
---|
64 | var algorithm = relevantRuns.Key;
|
---|
65 | Func<double, double> distFunc = (d) => Math.Exp(NeighborhoodFactor * (-d / maxDist));
|
---|
66 | var pis = relevantRuns.Value.Select(x => ((StringValue)x.Parameters["Problem Name"]).Value).Distinct()
|
---|
67 | .Select(x => Tuple.Create(x, okc.ProblemInstances.SingleOrDefault(y => ((StringValue)y.Parameters["Problem Name"]).Value == x)))
|
---|
68 | .Where(x => x.Item2 != null && x.Item2.Parameters.ContainsKey("BestKnownQuality") && piDistances.ContainsKey(x.Item2))
|
---|
69 | .Select(x => Tuple.Create(x.Item1, distFunc(piDistances[x.Item2]), ((DoubleValue)x.Item2.Parameters["BestKnownQuality"]).Value))
|
---|
70 | .ToDictionary(x => x.Item1, x => Tuple.Create(x.Item2, x.Item3));
|
---|
71 | var sumPis = pis.Sum(x => x.Value.Item1);
|
---|
72 | var avgERT = 0.0;
|
---|
73 | foreach (var problemRuns in relevantRuns.Value.GroupBy(x => ((StringValue)x.Parameters["Problem Name"]).Value)) {
|
---|
74 | Tuple<double, double> info;
|
---|
75 | if (!pis.TryGetValue(problemRuns.Key, out info)) continue;
|
---|
76 | var convGraph = new List<List<Tuple<double, double>>>();
|
---|
77 | foreach (var run in problemRuns) {
|
---|
78 | var current = new List<Tuple<double, double>>();
|
---|
79 | var performanceGraph = ((IndexedDataTable<double>)run.Results["QualityPerEvaluations"]);
|
---|
80 | current.AddRange(performanceGraph.Rows.First().Values.TakeWhile(v => v.Item1 < okc.MaximumEvaluations.Value));
|
---|
81 | if (current.Count > 0) {
|
---|
82 | current.Add(Tuple.Create((double)okc.MaximumEvaluations.Value, current.Last().Item2));
|
---|
83 | convGraph.Add(current);
|
---|
84 | }
|
---|
85 | }
|
---|
86 | var ert = ExpectedRuntimeHelper.CalculateErt(convGraph, (okc.Maximization ? (1 - okc.MinimumTarget.Value) : (1 + okc.MinimumTarget.Value)) * info.Item2, okc.Maximization).ExpectedRuntime;
|
---|
87 | if (double.IsNaN(ert)) {
|
---|
88 | ert = ExpectedRuntimeHelper.CalculateErt(problemRuns.ToList(), "QualityPerEvaluations", (okc.Maximization ? (1 - okc.MinimumTarget.Value) : (1 + okc.MinimumTarget.Value)) * info.Item2, okc.Maximization).ExpectedRuntime;
|
---|
89 | if (double.IsNaN(ert)) ert = int.MaxValue;
|
---|
90 | }
|
---|
91 | avgERT += info.Item1 * ert;
|
---|
92 | }
|
---|
93 | avgERT /= sumPis;
|
---|
94 | if (instances.ContainsKey(avgERT)) {
|
---|
95 | avgERT += new System.Random().NextDouble();
|
---|
96 | }
|
---|
97 | instances.Add(avgERT, (IAlgorithm)algorithm.Clone());
|
---|
98 | }
|
---|
99 |
|
---|
100 | return new FixedRankModel(instances.Select(x => Tuple.Create(x.Value, x.Key)));
|
---|
101 | }
|
---|
102 | }
|
---|
103 | }
|
---|