1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Random;
|
---|
26 | using System;
|
---|
27 | using System.Linq;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Analysis.SelfOrganizingMaps {
|
---|
30 | public static class SOM {
|
---|
31 | /// <summary>
|
---|
32 | /// Performs a self-organizing map to a range of feature column-vectors organized in a matrix.
|
---|
33 | /// </summary>
|
---|
34 | /// <param name="features">The feature matrix containing the column-vectors.</param>
|
---|
35 | /// <param name="random">The random number generator to use.</param>
|
---|
36 | /// <param name="somSize">The length of a side of the SOM grid (there are somSize * somSize neurons).</param>
|
---|
37 | /// <param name="iterations">The amount of iterations to perform in learning.</param>
|
---|
38 | /// <param name="learningRate">The initial learning rate.</param>
|
---|
39 | /// <param name="learningRadius">The initial learning radius.</param>
|
---|
40 | /// <param name="jittering">If the final coordinates should be jittered slightly within the grid.</param>
|
---|
41 | /// <returns>A matrix of coordinates having N rows and 2 columns.</returns>
|
---|
42 | public static DoubleMatrix Map(DoubleMatrix features, IRandom random = null, int somSize = 5, int iterations = 100, double learningRate = double.NaN, double learningRadius = 5.0, bool jittering = true) {
|
---|
43 | if (random == null) random = new MersenneTwister();
|
---|
44 | var K = somSize * somSize;
|
---|
45 | var N = features.Columns;
|
---|
46 | var L = features.Rows;
|
---|
47 |
|
---|
48 | if (double.IsNaN(learningRate)) learningRate = 1.0 / Math.Sqrt(2.0 * L);
|
---|
49 | var fixedLearningRate = learningRate / 10.0;
|
---|
50 | var varLearningRate = 9.0 * fixedLearningRate;
|
---|
51 | Func<int, int> getX = (neuron) => neuron % somSize;
|
---|
52 | Func<int, int> getY = (neuron) => neuron / somSize;
|
---|
53 | Func<int, int, int, int, double> neighborhood = (maxIter, iter, k, bmu) => {
|
---|
54 | var sigma = learningRadius * ((maxIter - iter) / (double)maxIter) + 0.0001;
|
---|
55 | var xK = getX(k);
|
---|
56 | var yK = getY(k);
|
---|
57 | var xW = getX(bmu);
|
---|
58 | var yW = getY(bmu);
|
---|
59 | var d = (xK - xW) * (xK - xW) + (yK - yW) * (yK - yW);
|
---|
60 | return Math.Exp(-d / (2.0 * sigma * sigma));
|
---|
61 | };
|
---|
62 | var scaledFeatures = Scale(features);
|
---|
63 | var weights = Enumerable.Range(0, K).Select(k => Enumerable.Range(0, L).Select(_ => random.NextDouble()).ToArray()).ToArray();
|
---|
64 | // normalize s.t. sum(alphas[k]) = 1
|
---|
65 | for (var k = 0; k < K; k++) {
|
---|
66 | var sum = weights[k].Sum();
|
---|
67 | for (var i = 0; i < weights[k].Length; i++) weights[k][i] /= sum;
|
---|
68 | }
|
---|
69 | var oldWeights = weights.Select(x => (double[])x.Clone()).ToArray();
|
---|
70 |
|
---|
71 | for (var iter = 0; iter < iterations; iter++) {
|
---|
72 | learningRate = varLearningRate * ((iterations - iter) / (double)iterations) + fixedLearningRate;
|
---|
73 | var pointShuffle = Enumerable.Range(0, N).Shuffle(random).ToArray();
|
---|
74 | for (var p = 0; p < N; p++) {
|
---|
75 | var i = pointShuffle[p];
|
---|
76 | var bmu = GetBestMatchingUnit(scaledFeatures, weights, i);
|
---|
77 |
|
---|
78 | for (var k = 0; k < K; k++) {
|
---|
79 | for (var j = 0; j < L; j++) {
|
---|
80 | weights[k][j] = oldWeights[k][j] + learningRate * neighborhood(iterations, iter, k, bmu) * (scaledFeatures[j, i] - oldWeights[k][j]);
|
---|
81 | }
|
---|
82 | }
|
---|
83 | }
|
---|
84 | for (var k = 0; k < K; k++) {
|
---|
85 | for (var j = 0; j < L; j++) {
|
---|
86 | oldWeights[k][j] = weights[k][j];
|
---|
87 | }
|
---|
88 | }
|
---|
89 | }
|
---|
90 |
|
---|
91 | var result = new DoubleMatrix(N, 2);
|
---|
92 | for (var i = 0; i < N; i++) {
|
---|
93 | var bmu = GetBestMatchingUnit(scaledFeatures, weights, i);
|
---|
94 | if (!jittering) {
|
---|
95 | result[i, 0] = getX(bmu);
|
---|
96 | result[i, 1] = getY(bmu);
|
---|
97 | } else {
|
---|
98 | result[i, 0] = getX(bmu) + random.NextDouble() * 0.8;
|
---|
99 | result[i, 1] = getY(bmu) + random.NextDouble() * 0.8;
|
---|
100 | }
|
---|
101 | }
|
---|
102 | return result;
|
---|
103 | }
|
---|
104 |
|
---|
105 | private static int GetBestMatchingUnit(DoubleMatrix D, double[][] weights, int i) {
|
---|
106 | var bmu = -1;
|
---|
107 | var minV = double.MaxValue;
|
---|
108 | for (var k = 0; k < weights.Length; k++) {
|
---|
109 | var d = 0.0;
|
---|
110 | for (var r = 0; r < weights[k].Length; r++) {
|
---|
111 | d += (D[r, i] - weights[k][r]) * (D[r, i] - weights[k][r]);
|
---|
112 | }
|
---|
113 | if (d < minV) {
|
---|
114 | minV = d;
|
---|
115 | bmu = k;
|
---|
116 | }
|
---|
117 | }
|
---|
118 | return bmu;
|
---|
119 | }
|
---|
120 |
|
---|
121 | private static DoubleMatrix Scale(DoubleMatrix features) {
|
---|
122 | var scaledFeatures = new DoubleMatrix(features.Rows, features.Columns);
|
---|
123 | for (var i = 0; i < features.Rows; i++) {
|
---|
124 | var rowSum = 0.0;
|
---|
125 | for (var j = 0; j < features.Columns; j++) rowSum += features[i, j];
|
---|
126 | if (rowSum.IsAlmost(0.0)) rowSum = 1.0;
|
---|
127 | for (var j = 0; j < features.Columns; j++) scaledFeatures[i, j] = features[i, j] / rowSum;
|
---|
128 | }
|
---|
129 | return scaledFeatures;
|
---|
130 | }
|
---|
131 | }
|
---|
132 | }
|
---|