Free cookie consent management tool by TermsFeed Policy Generator

source: branches/1265_HeuristicLab.Visualization/HeuristicLab.Visualization/3.3/Primitives/PrimitiveUtil.cs @ 17203

Last change on this file since 17203 was 13716, checked in by bburlacu, 9 years ago

#1265: Added option to select the SmoothingMode in the ChartControl. Introduced a LabeledPrimitive which encapsulates a RectangularPrimitiveBase primitive and supports drawing a text label on top of it.
Introduced a set of useful methods in the PrimitiveUtil class for calculating intersection points between linear and rectangular primitives (useful for connecting shapes together).

File size: 6.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24
25namespace HeuristicLab.Visualization {
26  public static class PrimitiveUtil {
27    public static List<PointD> ComputeIntersect(this Rectangle rect, Line line) {
28      var a = rect.LowerLeft;
29      var c = rect.UpperRight;
30      var b = new PointD(c.X, a.Y);
31      var d = new PointD(a.X, c.Y);
32      var ls = line.Start;
33      var le = line.End;
34
35      var intersectionPoints = new List<PointD>();
36      var p = PointD.Empty;
37      if (LineIntersect(ls, le, a, b, ref p)) intersectionPoints.Add(p);
38      if (LineIntersect(ls, le, b, c, ref p)) intersectionPoints.Add(p);
39      if (LineIntersect(ls, le, c, d, ref p)) intersectionPoints.Add(p);
40      if (LineIntersect(ls, le, d, a, ref p)) intersectionPoints.Add(p);
41
42      // return the intersection points in the order of the distance to the start of the line
43      intersectionPoints.Sort((p1, p2) => EuclideanDistance(p1, line.Start).CompareTo(EuclideanDistance(p2, line.Start)));
44
45      return intersectionPoints;
46    }
47
48    public static List<PointD> ComputeIntersect(this Ellipse ell, Line line) {
49      var intersectionPoints = new List<PointD>();
50
51      var x1 = line.Start.X;
52      var y1 = line.Start.Y;
53      var x2 = line.End.X;
54      var y2 = line.End.Y;
55      var midX = ell.Center().X;
56      var midY = ell.Center().Y;
57      var h = ell.Size.Width / 2;
58      var v = ell.Size.Height / 2;
59
60      // translate coordinate system to be the center of the ellipse
61      x1 -= midX;
62      y1 -= midY;
63
64      x2 -= midX;
65      y2 -= midY;
66
67      if (x1.IsAlmost(x2)) {
68        var y = (v / h) * Math.Sqrt(h * h - x1 * x1);
69        if (Math.Min(y1, y2) <= y && y <= Math.Max(y1, y2)) {
70          intersectionPoints.Add(new PointD(x1 + midX, y + midY));
71        }
72        if (Math.Min(y1, y2) <= -y && -y <= Math.Max(y1, y2)) {
73          intersectionPoints.Add(new PointD(x1 + midX, -y + midY));
74        }
75        return intersectionPoints;
76      }
77
78      var a = (y2 - y1) / (x2 - x1);
79      var b = y1 - a * x1;
80      var h2 = h * h;
81      var v2 = v * v;
82      var r = a * a * h2 + v2;
83      var s = 2 * a * b * h2;
84      var t = h2 * (b * b - v2);
85      var d = s * s - 4 * r * t;
86
87      if (d > 0) {
88        var xi1 = (-s + Math.Sqrt(d)) / (2 * r);
89        var xi2 = (-s - Math.Sqrt(d)) / (2 * r);
90
91        var yi1 = a * xi1 + b;
92        var yi2 = a * xi2 + b;
93
94        if (isPointInLine(x1, x2, y1, y2, xi1, yi1)) {
95          intersectionPoints.Add(new PointD(xi1 + midX, yi1 + midY));
96        }
97        if (isPointInLine(x1, x2, y1, y2, xi2, yi2)) {
98          intersectionPoints.Add(new PointD(xi2 + midX, yi2 + midY));
99        }
100      } else if (d.IsAlmost(0)) {
101        var xi = -s / (2 * r);
102        var yi = a * xi + b;
103
104        if (isPointInLine(x1, x2, y1, y2, xi, yi)) {
105          intersectionPoints.Add(new PointD(xi + midX, yi + midY));
106        }
107      }
108      intersectionPoints.Sort((p1, p2) => EuclideanDistance(p1, line.Start).CompareTo(EuclideanDistance(p2, line.Start)));
109      return intersectionPoints;
110    }
111
112    public static PointD Center(this RectangularPrimitiveBase primitive) {
113      return new PointD((primitive.LowerLeft.X + primitive.UpperRight.X) / 2, (primitive.LowerLeft.Y + primitive.UpperRight.Y) / 2);
114    }
115
116    #region lowlevel
117    public static double EuclideanDistance(PointD a, PointD b) {
118      var x = a.X - b.X;
119      var y = a.Y - b.Y;
120      return Math.Sqrt(x * x + y * y);
121    }
122
123    public static bool isPointInLine(double x1, double x2, double y1, double y2, double px, double py) {
124      double xMin = Math.Min(x1, x2);
125      double xMax = Math.Max(x1, x2);
126
127      double yMin = Math.Min(y1, y2);
128      double yMax = Math.Max(y1, y2);
129
130      return xMin <= px && px <= xMax && yMin <= py && py <= yMax;
131    }
132
133    private static bool IsAlmost(this double x, double y, double eps = 1e-12) {
134      return Math.Abs(x - y) < eps;
135    }
136    // finds the intersection point between line segments AB and CD
137    private static bool LineIntersect(PointD a, PointD b, PointD c, PointD d, ref PointD intersectionPoint) {
138      // false if either segment is zero-length
139      if (a == b || c == d)
140        return false;
141
142      // false if the segments share a common endpoint
143      if (a == c || b == c || a == d || b == d)
144        return false;
145
146      // translate the reference system so that point A is the new origin
147      var bx = b.X - a.X;
148      var by = b.Y - a.Y;
149      var cx = c.X - a.X;
150      var cy = c.Y - a.Y;
151      var dx = d.X - a.X;
152      var dy = d.Y - a.Y;
153
154      var ab = Math.Sqrt(bx * bx + by * by);
155
156      var sin = by / ab;
157      var cos = bx / ab;
158
159      // rotate the system so that point B is on the positive X axis
160      var tmp = cx * cos + cy * sin;
161      cy = cy * cos - cx * sin;
162      cx = tmp;
163
164      tmp = dx * cos + dy * sin;
165      dy = dy * cos - dx * sin;
166      dx = tmp;
167
168      // return false if CD doesn't cross AB
169      if (cy < 0 && dy < 0 || cy >= 0 && dy >= 0)
170        return false;
171
172      var xIntersect = dx + (cx - dx) * dy / (dy - cy);
173
174      if (xIntersect < 0 || xIntersect > ab)
175        return false;
176
177      intersectionPoint = new PointD(a.X + xIntersect * cos, a.Y + xIntersect * sin);
178      return true;
179    }
180    #endregion
181  }
182}
Note: See TracBrowser for help on using the repository browser.