1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Drawing;
|
---|
4 | using System.Linq;
|
---|
5 | using HEAL.Attic;
|
---|
6 | using HeuristicLab.Common;
|
---|
7 | using HeuristicLab.Core;
|
---|
8 | using HeuristicLab.Data;
|
---|
9 | using HeuristicLab.Operators;
|
---|
10 | using HeuristicLab.Optimization;
|
---|
11 | using HeuristicLab.Optimization.Operators;
|
---|
12 | using HeuristicLab.Parameters;
|
---|
13 |
|
---|
14 | namespace HeuristicLab.Analysis.FitnessLandscape.Evolvability {
|
---|
15 |
|
---|
16 | [Item("Evolvability Analyzer", "Compares two sets of scopes containing the original population and the evolved population generating several evolvability measures.")]
|
---|
17 | [StorableType("6B05CC43-161A-45C6-9B08-A4CC2235A96B")]
|
---|
18 | public class EvolvabilityAnalyzer : AlgorithmOperator, IAnalyzer {
|
---|
19 |
|
---|
20 | public bool EnabledByDefault
|
---|
21 | {
|
---|
22 | get { return false; }
|
---|
23 | }
|
---|
24 |
|
---|
25 | #region Parameters
|
---|
26 | public LookupParameter<DoubleValue> QualityParameter
|
---|
27 | {
|
---|
28 | get { return (LookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
29 | }
|
---|
30 | public LookupParameter<IntValue> SampleSizeParameter
|
---|
31 | {
|
---|
32 | get { return (LookupParameter<IntValue>)Parameters["SampleSize"]; }
|
---|
33 | }
|
---|
34 | public LookupParameter<HeatMap> EvolvabilityPlotParameter
|
---|
35 | {
|
---|
36 | get { return (LookupParameter<HeatMap>)Parameters["EvolvabilityPlot"]; }
|
---|
37 | }
|
---|
38 | public LookupParameter<VariableCollection> ResultsParameter
|
---|
39 | {
|
---|
40 | get { return (LookupParameter<VariableCollection>)Parameters["Results"]; }
|
---|
41 | }
|
---|
42 | public LookupParameter<ScatterPlot> FitnessCloudParameter
|
---|
43 | {
|
---|
44 | get { return (LookupParameter<ScatterPlot>)Parameters["FitnessCloud"]; }
|
---|
45 | }
|
---|
46 | public LookupParameter<DataTable> EvolvabilityPortraitParameter
|
---|
47 | {
|
---|
48 | get { return (LookupParameter<DataTable>)Parameters["EvolvabilityPortrait"]; }
|
---|
49 | }
|
---|
50 | public ValueLookupParameter<IntValue> NrOfBinsParameter
|
---|
51 | {
|
---|
52 | get { return (ValueLookupParameter<IntValue>)Parameters["NrOfBins"]; }
|
---|
53 | }
|
---|
54 | public ScopeParameter ScopeParameter
|
---|
55 | {
|
---|
56 | get { return (ScopeParameter)Parameters["Scope"]; }
|
---|
57 | }
|
---|
58 | #endregion
|
---|
59 |
|
---|
60 | #region Constructors
|
---|
61 | public EvolvabilityAnalyzer() {
|
---|
62 | Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The qualities of evolved and unevolved solution candidates"));
|
---|
63 | Parameters.Add(new LookupParameter<IntValue>("SampleSize", "The number of samples or population size for evolvability analysis"));
|
---|
64 | Parameters.Add(new LookupParameter<HeatMap>("EvolvabilityPlot", "Collected evolvability values"));
|
---|
65 | Parameters.Add(new LookupParameter<VariableCollection>("Results", "The collection of all results of this algorithm"));
|
---|
66 | Parameters.Add(new LookupParameter<ScatterPlot>("FitnessCloud", "A fitness cloud of the original vs. evolved sample."));
|
---|
67 | Parameters.Add(new LookupParameter<DataTable>("EvolvabilityPortrait", "Evolvability Portrait as described in Smith et. al (2002). Evol Comput 10:1–34"));
|
---|
68 | Parameters.Add(new ValueLookupParameter<IntValue>("NrOfBins", "Nr of bins for evolvability portrait analysis", new IntValue(25)));
|
---|
69 | Parameters.Add(new ScopeParameter("Scope", "The current scope"));
|
---|
70 |
|
---|
71 | var resultsCollector = new ResultsCollector();
|
---|
72 | resultsCollector.CollectedValues.Add(new LookupParameter<HeatMap>(EvolvabilityPlotParameter.Name));
|
---|
73 | resultsCollector.CollectedValues.Add(new LookupParameter<ScatterPlot>(FitnessCloudParameter.Name));
|
---|
74 | resultsCollector.CollectedValues.Add(new LookupParameter<DataTable>(EvolvabilityPortraitParameter.Name));
|
---|
75 |
|
---|
76 | OperatorGraph.InitialOperator = resultsCollector;
|
---|
77 | resultsCollector.Successor = null;
|
---|
78 | }
|
---|
79 |
|
---|
80 | [StorableConstructor]
|
---|
81 | protected EvolvabilityAnalyzer(StorableConstructorFlag _) : base(_) { }
|
---|
82 |
|
---|
83 | protected EvolvabilityAnalyzer(EvolvabilityAnalyzer original, Cloner cloner)
|
---|
84 | : base(original, cloner) {
|
---|
85 | }
|
---|
86 | #endregion
|
---|
87 |
|
---|
88 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
89 | return new EvolvabilityAnalyzer(this, cloner);
|
---|
90 | }
|
---|
91 |
|
---|
92 | public override IOperation Apply() {
|
---|
93 | var points = GenerateQualityPairs(ScopeParameter.ActualValue);
|
---|
94 | GetOrCreateEvolvabilityPlot().Add(points);
|
---|
95 | GetOrCreateScatterPlot().Add(points);
|
---|
96 | CreateEvolvabilityPortrait(ScopeParameter.ActualValue);
|
---|
97 | return base.Apply();
|
---|
98 | }
|
---|
99 |
|
---|
100 | private IEnumerable<PointF> GenerateQualityPairs(IScope globalScope) {
|
---|
101 | foreach (IScope sampleScope in globalScope.SubScopes) {
|
---|
102 | double originalQuality = ((DoubleValue)sampleScope.Variables[QualityParameter.ActualName].Value).Value;
|
---|
103 | foreach (IScope evolvedScope in sampleScope.SubScopes) {
|
---|
104 | double evolvedQuality = ((DoubleValue)evolvedScope.Variables[QualityParameter.ActualName].Value).Value;
|
---|
105 | yield return new PointF((float)originalQuality, (float)evolvedQuality);
|
---|
106 | }
|
---|
107 | }
|
---|
108 | }
|
---|
109 |
|
---|
110 | private HeatMap GetOrCreateEvolvabilityPlot() {
|
---|
111 | HeatMap evolvabilityPlot = EvolvabilityPlotParameter.ActualValue as HeatMap;
|
---|
112 | if (evolvabilityPlot == null) {
|
---|
113 | evolvabilityPlot = new HeatMap();
|
---|
114 | evolvabilityPlot.Name = "Evolvability";
|
---|
115 | EvolvabilityPlotParameter.ActualValue = evolvabilityPlot;
|
---|
116 | }
|
---|
117 | return evolvabilityPlot;
|
---|
118 | }
|
---|
119 |
|
---|
120 | private ScatterPlot GetOrCreateScatterPlot() {
|
---|
121 | ScatterPlot scatterPlot = FitnessCloudParameter.ActualValue as ScatterPlot;
|
---|
122 | if (scatterPlot == null) {
|
---|
123 | scatterPlot = new ScatterPlot();
|
---|
124 | scatterPlot.Name = "Fitness Cloud";
|
---|
125 | scatterPlot.XAxisName = "Parent Fitness";
|
---|
126 | scatterPlot.YAxisName = "Offspring Fitness";
|
---|
127 | FitnessCloudParameter.ActualValue = scatterPlot;
|
---|
128 | }
|
---|
129 | return scatterPlot;
|
---|
130 | }
|
---|
131 |
|
---|
132 | private DataTable GetOrCreateEvolvabilityPortrait() {
|
---|
133 | DataTable evolvabilityPortrait = EvolvabilityPortraitParameter.ActualValue as DataTable;
|
---|
134 | if (evolvabilityPortrait == null) {
|
---|
135 | evolvabilityPortrait = new DataTable("Evolvability Portrait");
|
---|
136 | evolvabilityPortrait.Rows.Add(new DataRow("E_a", "Probability of non-deleterious mutation"));
|
---|
137 | evolvabilityPortrait.Rows.Add(new DataRow("E_b", "Average expected offspring fitness"));
|
---|
138 | evolvabilityPortrait.Rows.Add(new DataRow("E_c", "Top offspring fitness"));
|
---|
139 | evolvabilityPortrait.Rows.Add(new DataRow("E_d", "Bottom offspring fitness"));
|
---|
140 | EvolvabilityPortraitParameter.ActualValue = evolvabilityPortrait;
|
---|
141 | }
|
---|
142 | return evolvabilityPortrait;
|
---|
143 | }
|
---|
144 |
|
---|
145 | private double GetQuality(IScope scope) {
|
---|
146 | return ((DoubleValue)scope.Variables[QualityParameter.ActualName].Value).Value;
|
---|
147 | }
|
---|
148 |
|
---|
149 | private void CreateEvolvabilityPortrait(IScope globalScope) {
|
---|
150 | DataTable table = GetOrCreateEvolvabilityPortrait();
|
---|
151 | var e_a = table.Rows["E_a"].Values;
|
---|
152 | var e_b = table.Rows["E_b"].Values;
|
---|
153 | var e_c = table.Rows["E_c"].Values;
|
---|
154 | var e_d = table.Rows["E_d"].Values;
|
---|
155 | var qualities = globalScope.SubScopes.Select(s => GetQuality(s));
|
---|
156 | double min = qualities.Min();
|
---|
157 | double max = qualities.Max();
|
---|
158 | double range = max - min;
|
---|
159 | double stepSize = range / NrOfBinsParameter.ActualValue.Value;
|
---|
160 | double threshold = min + stepSize;
|
---|
161 |
|
---|
162 | int n_not_worse = 0;
|
---|
163 | int n = 0;
|
---|
164 | double totalOffspringQuality = 0;
|
---|
165 | double best = double.MinValue;
|
---|
166 | double worst = double.MaxValue;
|
---|
167 | foreach (IScope sampleScope in globalScope.SubScopes) {
|
---|
168 | double originalQuality = GetQuality(sampleScope);
|
---|
169 | foreach (IScope evolvedScope in sampleScope.SubScopes) {
|
---|
170 | double evolvedQuality = GetQuality(evolvedScope);
|
---|
171 | if (evolvedQuality >= originalQuality)
|
---|
172 | n_not_worse++;
|
---|
173 | n++;
|
---|
174 | totalOffspringQuality += evolvedQuality;
|
---|
175 | best = Math.Max(best, evolvedQuality);
|
---|
176 | worst = Math.Min(worst, evolvedQuality);
|
---|
177 | }
|
---|
178 | if (originalQuality > threshold) {
|
---|
179 | threshold += stepSize;
|
---|
180 | e_a.Add(1.0 * n_not_worse / n);
|
---|
181 | e_b.Add(totalOffspringQuality / n);
|
---|
182 | e_c.Add(best);
|
---|
183 | e_d.Add(worst);
|
---|
184 | n_not_worse = 0;
|
---|
185 | n = 0;
|
---|
186 | totalOffspringQuality = 0;
|
---|
187 | best = double.MinValue;
|
---|
188 | worst = double.MaxValue;
|
---|
189 | }
|
---|
190 | }
|
---|
191 | }
|
---|
192 | }
|
---|
193 | }
|
---|