work in progres ... = How to ... implement a new VRP ProblemInstance = == Goals == One way to implement a new VRP variant is by implementing a new {{{VRPProblemInstance}}}. This is a suitable possibility if the VRP variant requires additional model data. A {{{VRPProblemInstance}}} is responsible for storing all information about a VRP instance like coordinates, distances, demands, etc. By extending a {{{VRPProblemInstance}}} it is possible to add additional data as additional constraints or flexibility to a VRP variant. It is also necessary to implement a new {{{VRPEvaluator}}} (see [wiki:UsersHowtosImplementANewVRPEvaluator How to ... implement a new VRP Evaluator]) to interpret the new data. In addition to the new {{{VRPProblemInstance}}} a new ''parser'' for reading the additional data from a file is required. In order to integrate the new parser into HeuristicLab a {{{VRPInstanceProvider}}} and other components are also required. After this tutorial you will be able to implement you own VRP variants that require additional model data. You will also have a basic understanding of the concepts and architecture concerning the {{{VRPProblemInstance}}}, the {{{VRPInstanceProvider}}} and related components. == The Time Dependent Vehicle Routing Problem == To show the procedure of implementing a new {{{VRPProblemInstance}}}, the implementation of the [http://www.sciencedirect.com/science/article/pii/S0305054804000887 Time Dependent Travel Time Vehicle Routing Problem] (TDVRP) is demonstrated. The TDVPR considers the travel time variation during a day. In this tutorial, the TDVRP is based on the ''Capacitated Vehicle Routing Problem with Time Windows'' (CVRPTW). The additional data are the ''travel times'', which associate a ''travel time'' factor for a specific time. There are multiple ways to assign the ''travel time'' to the VRP. One way is to specify a ''global function'' which maps a ''time of a day'' to a ''travel time'' for all connections, as shown the following figure ([http://www.sciencedirect.com/science/article/pii/S0305054804000887 source]). [[Image(1_TDVRP_travel_time.png, 600px)]] In this tutorial we use ''travel-times matrices''. Each matrix stores a ''travel time factor'' for every connection. Every ''travel time matrix'' also specifies a unique ''timestamp''. Between the timestamp of a matrix and the subsequent matrix the travel times of the first matrix is used, resulting in hard steps of the travel time during the day. == Prerequisites == Before you start, make sure you have the latest version of the HeuristicLab source code ready. Then create a new plugin called {{{HeuristicLab.TimeDependentVRP}}}. For additional help for creating a new plugin, see [wiki:UsersHowtosImplementPluginsStepByStep How to ... create HeuristicLab plugins (step by step)]. Your plugin need an additional dependency onto the {{{HeuristicLab.Problems.VehicleRouting}}} and the {{{HeuristicLab.Problems.Instances.VehicleRouting}}} plugin. The plugin should look like this: {{{ #!cs [Plugin("HeuristicLab.TimeDependentVRP", "1.0.0.0")] [PluginFile("HeuristicLab.TimeDependentVRP.dll", PluginFileType.Assembly)] [PluginDependency("HeuristicLab.Problems.VehicleRouting", "3.4")] [PluginDependency("HeuristicLab.Problems.Instances.VehicleRouting", "3.4")] public class TimeDependentVRPPlugin : PluginBase { } }}} In addition you will need references onto following HeuristicLab assemblies: - HeuristicLab.Collections - HeuristicLab.Common - HeuristicLab.Core - HeuristicLab.Data - HeuristicLab.Operators - HeuristicLab.Optimization - HeuristicLab.Parameters - HeuristicLab.Persistence - '''HeuristicLab.Problems.VehicleRouting''' - '''HeuristicLab.Problems.Instances''' - '''HeuristicLab.Problems.Instances.VehicleRouting''' = ProblemInstance = == Foundations == A {{{VRPProblemInstance}}} contains all data for a specific VRP problem, for example the number of cities, their coordinates and demands. In addition the {{{VRPProblemInstance}}} provides methods for calculate the distance between two cities. Internally a ''distance matrix'' is created beforehand for a fast calculation. A {{{VRPEvaluator}}} uses the {{{VRPProblemInstance}}} and a ''solution candidate'' for the {{{VRPProblemInstance}}} to evaluate the ''solution candidate''. [[Image(2_TDVRP_ProblemInstance_simple.png, 700px)]] HeuristicLab implements several common VRP variants like the ''Capaciated VRP (CVRP)'' and ''VRP with Time Windows (VRPTW)''. Every VRP variant extends an existing {{{VRPProblemInstance}}} and adds the new data, for example the capacity for the vehicles in the CVRP. In order to interpret the new data a new {{{VRPEvaluator}}} for each {{{VRPProblemInstance}}} is also necessary. == Extending ProblemInstance and Evaluator == To implement a new VRP variant with additional model data you have to extend an existing {{{VRPProblemInstance}}} and {{{VRPEvaluator}}}. For this tutorial we extend the available CVRPTW. [[Image(3_TDVRP_ProblemInstance_full.png, 800px)]] == Implement new ProblemInstance == The new {{{TimeDependentProblemInstance}}} derives from the existing {{{TimeWindowedProblemInstance}}}. In addition we store the ''travel times'' as dictionary of a ''timestamp'' and the ''travel time matrix''. We also specify a method for determining the travel time between two cities for a specific time. {{{ #!cs public interface ITimeDependentProblemInstance : IVRPProblemInstance { ItemDictionary TravelTimes { get; } double GetTravelTime(double time, int x, int y); } }}} To implement the {{{TimeDependentProblemInstance}}} in HeuristicLab you have to add specific code for cloning and persistence. {{{ #!cs [Item("TimeDependentProblemInstance", "Represents a time dependant CVRPTW instance.")] [StorableClass] public class TimeDependentProblemInstance : CVRPTWProblemInstance, ITimeDependentProblemInstance { [StorableConstructor] protected TimeDependentProblemInstance(bool deserializing) : base(deserializing) { } public override IDeepCloneable Clone(Cloner cloner) { return new TimeDependentProblemInstance(this, cloner); } protected TimeDependentProblemInstance(TimeDependentProblemInstance original, Cloner cloner) : base(original, cloner) { AttachEventHandlers(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { AttachEventHandlers(); } } }}} To store the dictionary of timestamps and travel time matrices we use a {{{ValueParameter}}}. Furthermore we need to register an event handler to the parameter. If the travel times change we have to re-evaluate our known solution. To link the new {{{VRPProblemInstance}}} to a new {{{VRPEvaluator}}} we have to override the Evaluator property and return our new {{{TimeDependentVRPEvaluator}}}. {{{ #!cs public class TimeDependentProblemInstance : CVRPTWProblemInstance, ITimeDependentProblemInstance { protected IValueParameter> TravelTimesParameter { get { return (IValueParameter>)Parameters["TravelTimes"]; } } public ItemDictionary TravelTimes { get { return TravelTimesParameter.Value; } set { TravelTimesParameter.Value = value; } } public TimeDependentProblemInstance() { Parameters.Add(new ValueParameter>("TravelTimes", "The time dependent travel times.", new ItemDictionary())); AttachEventHandlers(); } private void AttachEventHandlers() { TravelTimesParameter.ValueChanged += TravelTimesParameterOnValueChanged; } private void TravelTimesParameterOnValueChanged(object sender, EventArgs eventArgs) { EvalBestKnownSolution(); } protected override IVRPEvaluator Evaluator { get { return new TimeDependentVRPEvaluator(); } } } }}} The {{{GetTravelTime}}} method is used for determining the travel time between two cities for a given time by first determining the timestamp key for the dictionary. This is done by finding the highest timestamp in the keys that is smaller than the given time. {{{ #!cs public double GetTravelTime(double time, int x, int y) { double travelTime = 1; if (TravelTimes != null) { var sortedKeys = TravelTimes.Keys.OrderBy(k => k.Value).ToList(); int i = 0; IntValue key = null; while (i < sortedKeys.Count && sortedKeys[i].Value <= time) { key = sortedKeys[i]; i++; } if (key != null) travelTime = TravelTimes[key][x, y]; } return travelTime; } }}} == Implement new Evaluator == In order to make use of the travel time a new {{{VRPEvaluator}}} is necessary. For detailed information about how to implement a new VRP Evaluator, see [wiki:UsersHowtosImplementANewVRPEvaluator How to ... implement a new VRP Evaluator]. As we derived from {{{CVRPTWProblemInstance}}} for the new {{{TimeDependentProblemIntance}}}, we now derive the {{{TimeDependentVRPEvaluator}}} from the existing {{{CVRPTWEvaluator}}}. {{{ #!cs [Item("TimeDependentVRPEvaluator", "Represents a time dependent VRP evaluator.")] [StorableClass] public class TimeDependentVRPEvaluator : CVRPTWEvaluator { [StorableConstructor] protected TimeDependentVRPEvaluator(bool deserializing) : base(deserializing) { } public TimeDependentVRPEvaluator() { } public override IDeepCloneable Clone(Cloner cloner) { return new TimeDependentVRPEvaluator(this, cloner); } protected TimeDependentVRPEvaluator(TimeDependentVRPEvaluator original, Cloner cloner) : base(original, cloner) { } } }}} === EvaluateTour === Note: Because the evaluator is called very frequently in the optimization progress, the performance is critical. Therefore the design favors speed over proper architecture and code duplication is accepted. For the {{{EvaluateTour}}} method we copy the existing implementation from the base class. The only thing we need to do is to multiply the driven distance with the ''travel time''. This is done by following changes in the method. First get the {{{TimeDependentProblemInstance}}} in the beginning of the method by casting the available problem instance. {{{ #!cs ITimeDependentProblemInstance ttvrp = instance as ITimeDependentProblemInstance; }}} In the center of the method change the line {{{ #!cs double currentDistace = vrptw.GetDistance(start, end, solution); }}} to {{{ #!cs double currentDistace = vrptw.GetDistance(start, end, solution) * ttvrp.GetTravelTime(time, start, end); }}} After these changes the travel time is applied to every driven distance. === GetTourInsertionCosts === Unfortunately the increment based evaluation is trickier than the evaluation of a whole tour. Because the insertion of a stop can cause different travel times for the following stops the existing implementation cannot be used directly. For simplicity and reducing the scope of this tutorial we evaluate the whole tour and calculate the quality difference. Of course this is increases the runtime drastically, but we want to focus on other topics in this tutorial. {{{ #!cs protected override double GetTourInsertionCosts(IVRPProblemInstance instance, IVRPEncoding solution, TourInsertionInfo tourInsertionInfo, int index, int customer, out bool feasible) { TourEncoding individual = null; if (solution is TourEncoding) individual = solution as TourEncoding; else { individual = PotvinEncoding.ConvertFrom(solution, instance); } int tourIdx = -1; for (int i = 0; i < individual.Tours.Count; i++) { if (solution.GetVehicleAssignment(i) == tourInsertionInfo.Vehicle) tourIdx = i; } Tour tour = individual.Tours[tourIdx]; tour.Stops.Insert(index, customer); VRPEvaluation newEval = instance.EvaluateTour(tour, individual); tour.Stops.RemoveAt(index); feasible = instance.Feasible(newEval); return newEval.Quality - tourInsertionInfo.Quality; } }}} = Read, provide and interpret Data = After the previous section we can use the new problem instances of the {{{Time Dependent VRP}}} variant and evaluate them. However, we need to create the problem instances first. For a brief overview the following sequence diagram shows how the data flows between the different components in the creation process. For simplicity more complex HeuristicLab components are abstracted. [[Image(4_TDVRP_DataFlow.png, 600px)]] == Parser == The first step is to read all relevant data from a file. Our parser is based on the existing {{{SolomonParser}}}. Unfortunately the parser is not designed for reusability, therefore we have to copy the implementation and modify it. First, we create a new class {{{TimeDependentParser}}} and copy the fields and methods from the {{{SolomonParser}}}. Then we add our new data, the '' travel times'', to the class. {{{ #!cs //new data private Dictionary travelTimes; public Dictionary TravelTimes { get { return travelTimes; } } }}} {{{ #!cs public TimeDependentParser() { ... travelTimes = new Dictionary(); } }}} In the parse method we additionally have to read all values from the travel time matrices and store them in the dictionary. {{{ #!cs public void Parse() { ... // read matrices while (line != null) { if (line == "TIME MATRIX") { line = reader.ReadLine(); int time = int.Parse(line); travelTimes[time] = new double[cities, cities]; for (int i = 0; i < cities; i++) { line = reader.ReadLine(); string[] tokens = line.Split('\t'); for (int j = 0; j < cities; j++) { travelTimes[time][i, j] = double.Parse(tokens[j], CultureInfo.InvariantCulture); } } } line = reader.ReadLine(); } } } }}} == InstanceProvider == To provide a problem with a problem instance, HeuristicLab uses a {{{ProblemInstanceProvider}}}. A {{{ProblemInstanceProvider}}} specifies methods for loading the problem instance data from a source (a {{{Stream}}} or {{{File}}}) or provides problem instances by itself (from a preconfigured data store). The loading procedure from a file is handled by our {{{TimeDependentParser}}} from the previous section; we simply have to call it. The {{{InstanceProvider}}} returns problem unspecific data because some data can be imported from different problems. For example the traveling salesman data can be imported by the ''traveling salesman problem'' and the ''quadratic assignment problem''. For the problem unspecific data we create a {{{TimeDependentData}}} which derives from the existing {{{CVRPTWData}}} and add the dictionary with the timestamps and travel times. {{{ #! public class TimeDependentData : CVRPTWData { public Dictionary TravelTimes { get; set; } } }}} An abstract implementation of the {{{ProblemInstanceProvider}}} for VRP is the {{{VRPInstanceProvider}}. We only have to override certain methods for the data import. The {{{ImportData}}} and {{{LoadData}}} method both use the {{{TimeDependentParser}}} to parse the file. First we create a new {{{TimeDependentInstanceProvider}}} class which derives from the existing {{{VRPInstanceProvider}}} and override a few methods. In the {{{LoadInstance}}} method we call the parser and copy the loaded values from the parser to the {{{TimeDependentData}}} object. {{{ #!cs public class TimeDependentInstanceProvider : VRPInstanceProvider { public override string Name { get { return "Time Dependent VRP"; } } public override string Description { get { return "Benchmark test set"; } } public override Uri WebLink { get { return null; } } public override string ReferencePublication { get { return string.Empty; } } protected override string FileName { get { return "TDVRP"; } } public override bool CanImportData { get { return true; } } public override VRPData ImportData(string path) { return LoadInstance(new TimeDependentParser(path)); } protected override VRPData LoadData(Stream stream) { return LoadInstance(new TimeDependentParser(stream)); } private TimeDependentData LoadInstance(TimeDependentParser parser) { parser.Parse(); var instance = new TimeDependentData { Dimension = parser.Cities + 1, Coordinates = parser.Coordinates, Capacity = parser.Capacity, Demands = parser.Demands, DistanceMeasure = DistanceMeasure.Euclidean, ReadyTimes = parser.Readytimes, ServiceTimes = parser.Servicetimes, DueTimes = parser.Duetimes, MaximumVehicles = parser.Vehicles, Name = parser.ProblemName, TravelTimes = parser.TravelTimes }; return instance; } } }}} == Interpreter == To link the problem neutral data to the problem specific instance a {{{ProblemInstanceConsumer}}} is used. The {{{VehicleRoutingProblem}}} itself is a consumer of {{{VRPData}}} and specifies a {{{Load}}} method. To determine which problem specific instance has to be created, a lookup for a {{{VRPDataInterpreter}}} is performed. The {{{VRPDataInterpreter}}} is then responsible for transferring the problem independent data to the problem specific instance. For the Time Dependent VRP variant we create a {{{TimeDependentInterpreter}}} which derives from the {{{CVRPTWInterpreter}}}. The {{{Interpret}}} method first calls the implementation from the base class to copy the CVRPTW data and copy the travel times to the problem instance itself. {{{ #!cs class TimeDependentInterpreter : CVRPTWInterpreter, IVRPDataInterpreter { protected override IVRPProblemInstance CreateProblemInstance() { return new TimeDependentProblemInstance(); } protected override void Interpret(IVRPData data, IVRPProblemInstance problemInstance) { base.Interpret(data, problemInstance); TimeDependentData ttData = (TimeDependentData)data; TimeDependentProblemInstance problem = (TimeDependentProblemInstance)problemInstance; var travelTimes = new ItemDictionary(); foreach (var key in ttData.TravelTimes.Keys) { travelTimes[new IntValue(key)] = new DoubleMatrix(ttData.TravelTimes[key]); } problem.TravelTimes = travelTimes; } } }}} = Result = To load and start the time dependent VRP variant in HeuristicLab, we first need a valid file to load the {{{TimeDependentData}}} from. We use the data from the Solomon(CVRPTW) instance C101 and add the travel time matrices (dimension must match number of cities). For the travel times random values between 0.5 and 1.0 has been generated. The file should look like this: {{{ C101 VEHICLE NUMBER CAPACITY 25 200 CUSTOMER CUST NO. XCOORD. YCOORD. DEMAND READY TIME DUE DATE SERVICE TIME 0 40 50 0 0 1236 0 1 45 68 10 912 967 90 2 45 70 30 825 870 90 3 42 66 10 65 146 90 4 42 68 10 727 782 90 ... TIME MATRIX 0 0.925768957 0.520976414 0.562468007 0.750021875 0.61487113 ... 0.969856182 0.953186691 0.793840100 0.849949851 0.722734144 ... 0.686240672 0.770091988 0.76052254 0.943715274 0.831277119 ... 0.677805486 0.568948045 0.52780747 0.597541347 0.801783863 ... 0.890418577 0.827736775 0.596248865 0.900999375 0.913970905 ... ... TIME MATRIX 200 0.705789629 0.57992851 0.567098964 0.607691814 0.726458799 ... 0.889918297 0.914455074 0.665679621 0.889941709 0.656366975 ... 0.647343773 0.526871001 0.94999237 0.82489978 0.591413065 ... 0.899079133 0.971614305 0.612777292 0.740562405 0.773627941 ... 0.519786836 0.914662095 0.905892404 0.963831082 0.598044971 ... ... }}} We simply load the data by first opening one of the VRP samples, e.g. the ''Tabu Search – VRP'' sample. At the Library we choose our {{{TimeDependent VRP}}} implementation, and open our modified data file (c101_TT.txt from the attachments). In the Tabu Search Parameters tab we set the {{{MoveGenerator}}} to {{{PotvinPDShiftMultiMoveGenerator}}}. Optionally set the {{{SolutionCreator}}} to {{{PushForwardInsertionCreator}}} in the Problem tab. Finally run the algorithm. [[Image(5_TDVRP_Result.png, 500px)]] As you can see, the result differs slightly compared to the original version without time dependent travel times. Apparently the change is favorable because the travel time can be used optimal for the additional stops.