
Fachhochschul-Masterstudiengang

SOFTWARE ENGINEERING

4232 Hagenberg, Austria

Parameter Meta-Optimization of Metaheuristic
Optimization Algorithms

Diplomarbeit

zur Erlangung des akademischen Grades
Master of Science in Engineering

Eingereicht von

Christoph Neumüller, BSc

Begutachter: Prof. (FH) DI Dr. Stefan Wagner

September 2011

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmit-
tel nicht benutzt und die aus anderen Quellen entnommenen Stellen als solche
gekennzeichnet habe.

Hagenberg, am 4. September 2011

Christoph Neumüller, BSc.

ii

Contents

Erklärung ii

Abstract 1

Kurzfassung 2

1 Introduction 3
1.1 Motivation and Goal . 3
1.2 Structure and Content . 4

2 Theoretical Foundations 5
2.1 Metaheuristic Optimization . 5

2.1.1 Trajectory-Based Metaheuristics 6
2.1.2 Population-Based Metaheuristics 7
2.1.3 Optimization Problems 11
2.1.4 Operators . 13

2.2 Parameter Optimization . 17
2.2.1 Parameter Control . 18
2.2.2 Parameter Tuning . 18

2.3 Related Work in Meta-Optimization 19

3 Technical Foundations 22
3.1 HeuristicLab . 22

3.1.1 Key Concepts . 22
3.1.2 Algorithm Model . 23

3.2 HeuristicLab Hive . 25
3.2.1 Components . 26

4 Requirements 29

5 Implementation 31
5.1 Solution Encoding . 31

5.1.1 Parameter Trees in HeuristicLab 31
5.1.2 Parameter Configuration Trees 33

iii

Contents iv

5.1.3 Search Ranges . 36
5.1.4 Symbolic Expression Grammars 37

5.2 Fitness Function . 39
5.2.1 Handling of Infeasible Solutions 41

5.3 Operators . 41
5.3.1 Solution Creator . 42
5.3.2 Evaluator . 42
5.3.3 Mutation . 43
5.3.4 Crossover . 44

5.4 Analysis . 45
5.4.1 Population Analyzer . 45
5.4.2 Best Solution History Analyzer 45
5.4.3 Population Diversity Analyzer 45
5.4.4 Solution Cache Analyzer 46
5.4.5 Exhaustive Search . 47

6 Experimental Results 49
6.1 Scenario 1: Varying Problem Dimensions, Short Runtime 49

6.1.1 Meta-Level Algorithm . 49
6.1.2 Base-Level Algorithm . 50
6.1.3 Base-Level Problems . 50
6.1.4 Results and Discussion . 51

6.2 Scenario 2: Varying Problem Dimensions, Long Runtime 53
6.2.1 Results and Discussion . 54

6.3 Scenario 3: Varying Generations 56
6.4 Scenario 4: Varying Problem Instances 56

6.4.1 Meta-Level Algorithm . 57
6.4.2 Base-Level Algorithm . 57
6.4.3 Base-Level Problems . 58
6.4.4 Results and Discussion . 58

6.5 Scenario 5: Symbolic Expression Grammar for Regression 61
6.5.1 Meta-Level Algorithm . 61
6.5.2 Base-Level Algorithm . 61
6.5.3 Base-Level Problem . 61
6.5.4 Results and Discussion . 63

6.6 Scenario 6: Symbolic Expression Grammar for Classification . . . 63
6.6.1 Meta-Level Algorithm . 65
6.6.2 Base-Level Algorithm . 65
6.6.3 Base-Level Problems . 65
6.6.4 Results and Discussion . 67

7 Conclusion and Outlook 69

Bibliography 72

Contents v

List of Figures 76

List of Tables 79

Abstract

Metaheuristic algorithms are able to find good solutions for complex optimiza-
tion problems that cannot be solved efficiently by classical mathematical op-
timization techniques. Many different metaheuristic algorithms have been de-
veloped in the recent decades. However, each algorithm has its strengths and
weaknesses and until today, no algorithm has been found that can solve all prob-
lems better than all other algorithms. This fact is stated in the no free lunch
theorem (NFL) for optimization and is one of the reasons why metaheuristic
algorithms have parameters which allow a user to adapt the behavior of the
algorithm.

The choice of parameter values can have great impact on the effectiveness of
an algorithm, but that impact depends on the targeted problem. In the worst
case, the parameter values of an algorithm need to be tuned for each new prob-
lem instance. However, finding good parameter values is not trivial, as some
parameters influence the effects of others. Finding good behavioral parameter
values requires human expertise and time which are both, expensive and rare.
The search for optimal parameter values can be seen as an optimization problem
itself which can be solved by a metaheuristic optimization algorithm. This ap-
proach is called meta-optimization. The drawback of meta-optimization is that
it is extremely runtime intensive. Fortunately, the increasing availability of pow-
erful hardware and distributed computing infrastructures make this approach
possible.

This thesis shows the concept of meta-optimization in the form of an imple-
mentation for the heuristic optimization environment HeuristicLab. The main
aspects of the implementation are to be generic, extendable, parallelizable, easy
to use, and it should allow the application of different types of meta-optimization
algorithms. To demonstrate the effectiveness of the implementation, a number of
parameter optimization experiments are performed and analyzed for evolution-
ary algorithms. These experiments were executed in a distributed computation
environment, using a total CPU time of more than 7.5 years.

1

Kurzfassung

Metaheuristische Algorithmen eignen sich sehr gut zum Lösen von Optimie-
rungsproblemen, die mit klassischen mathematischen Optimierungsverfahren
nicht effizient gelöst werden können. In den vergangenen Jahrzehnten wurden
viele unterschiedliche Algorithmen entwickelt, die ihre individuellen Stärken und
Schwächen haben. Jedoch wurde bis heute kein Algorithmus gefunden, der alle
Optimierungsprobleme besser lösen kann als alle anderen Algorithmen. Das No
Free Lunch Theorem besagt, dass ein solcher Algorithmus nicht existiert. Aus
diesem Grund besitzen metaheuristische Algorithmen Steuerparameter, welche
es ermöglichen den Algorithmus an das vorliegende Problem anzupassen.

Die Auswahl der Parameterwerte kann großen Einfluss auf die Funktions-
weise eines Algorithmus haben. Diese Auswirkungen können sich jedoch von
Problem zu Problem unterscheiden. Im schlechtesten Fall müssen die Parame-
terwerte daher für jede Probleminstanz einzeln optimiert werden. Das Finden
optimaler Einstellungen ist jedoch nicht trivial, denn einige Parameter haben
Auswirkungen auf die Funktionsweise anderer Parameter. Deshalb ist die Suche
nach guten Parametrierungen sehr zeitaufwendig, wenn diese manuell durch-
geführt wird. Die Suche nach der optimalen Parameterbelegung kann jedoch
selbst als Optimierungsproblem angesehen werden, welches von einem meta-
heuristischen Algorithmus gelöst werden kann. Dieser Ansatz nennt sich Meta-
Optimierung. Der Nachteil der Meta-Optimierung ist der große Laufzeitbedarf.
Glücklicherweise wird dieser Nachteil durch die immer weiter steigende Verfüg-
barkeit von Rechenleistung immer kleiner.

Diese Arbeit zeigt das Konzept der Meta-Optimierung in Form einer Imple-
mentierung für die heuristische Optimierungsumgebung HeuristicLab. Die wich-
tigsten Aspekte der Implementierung sind Generizität, Erweiterbarkeit, Paral-
lelisierbarkeit, Benutzbarkeit und Austauschbarkeit der verwendeten Algorith-
men. Die Leistungsfähigkeit der Implementierung wird anhand einer Reihe von
Optimierungsszenarien demonstriert, deren Ergebnisse präsentiert und analy-
siert werden. Die Experimente für diese Arbeit wurden verteilt ausgeführt und
verbrauchten insgesamt eine Laufzeit von mehr als 7,5 Jahren.

2

Chapter 1

Introduction

1.1 Motivation and Goal

Optimization is the search for an optimal solution out of a number of feasible
solutions. There are many optimization problems which affect our daily life such
as finding the fastest tour through a number of destinations or planning the
optimal placement of machines in a factory. The number of possible solutions
for the many optimization problems grows exponentially when the dimension
of the problem (number of destinations, number of machines) is increased. This
fact is called the curse of dimensionality [8] and quickly leads to an extremely
large search space.

Metaheuristic algorithms are able find good solutions even in large search
spaces in reasonable time. However, they do not guarantee to find an optimal
solution. These algorithms iteratively try to improve one or many solution can-
didates by applying heuristics which are problem independent. Therefore, they
do not require much information about the problem. Metaheuristic algorithms
only require information on how to evaluate the quality of a solution candidate
and how it can be manipulated. There exists a large variety of metaheuristic al-
gorithms, many of which are inspired by natural processes. Evolution strategies,
genetic algorithms, tabu search or simulated annealing are some examples.

Most of these algorithms have a number of behavioral parameters which have
effects on their performance. For most algorithms, there exist established default
values for these parameters, which are commonly used. However, it turns out
that parameter values for an algorithm might work well on one problem instance
but not so well on another. Researchers are often in the situation that they need
to adapt the parameter values for every new problem instance. Unfortunately,
finding the best parameter values is not a trivial task and it is difficult to un-
derstand the effect of every parameter. Many parameters have effects on other
parameters which makes the problem even more complex. Metaheuristic algo-
rithms exist for decades, but a parameterless algorithm which performs well on
all problems has not been found yet. According to the no free lunch theorem by

3

1. Introduction 4

Wolpert and Macready [65] it is impossible to find an algorithm which performs
better than all other algorithms on all problems. Therefore, an algorithm needs
to have parameters to be adaptable to the problem.

The problem of finding the optimal parameters for an algorithm can be seen
as an optimization problem itself. The idea is to use an optimization algorithm
as a meta-level optimizer to find the optimal parameter values of another algo-
rithm. This concept is called parameter meta-optimization (PMO). There has
been research in the area of PMO in the past, but in most of the approaches,
specialized implementations were used for the meta-level algorithms which were
not exchangeable. In this thesis, a flexible and extendable implementation of the
PMO concept for the optimization environment HeuristicLab is presented. The
implementation should be highly configurable, user friendly and should allow
using any HeuristicLab algorithm as meta-level optimizer. To show the valid-
ity of the implementation, a number of parameter optimization scenarios are
defined and executed. Since the execution of meta-optimization algorithms is
highly runtime intensive, a distributed parallelization environment is used for
all experiments in this thesis.

1.2 Structure and Content
This thesis is structured as follows: In Chapter 2 an introduction to metaheuris-
tic optimization and parameter optimization in general is given. A brief overview
of related work in the area of PMO is also presented. Chapter 3 provides the
technical foundations for this thesis. The optimization environment Heuristic-
Lab as well as the distributed computation infrastructure HeuristicLab Hive are
described. In Chapter 4 the requirements for the implementation and the op-
timization scenarios for this thesis are outlined. Based on these requirements,
the implementation details of PMO for HeuristicLab are shown in Chapter 5.
In Chapter 6 the results of the parameter optimization scenarios are analyzed.
Finally, Chapter 7 summarizes the content of this thesis and gives an outlook
on possible improvements for the future.

Chapter 2

Theoretical Foundations

This chapter provides an introduction to the field of optimization with meta-
heuristic and evolutionary techniques. Furthermore, a selection of optimization
problems that are relevant for this thesis is presented. This chapter also gives
short explanations for the operators used in the experimental results in Chap-
ter 6. The second part of this chapter describes the concept of parameter meta-
optimization and gives an overview of related work.

2.1 Metaheuristic Optimization

For every optimization problem there exists a set of possible solutions which is
called the solution space. A solution can be seen as an input for a known model.
The model – also called objective function – calculates an output for a given
input. The output is considered the quality of a solution. A globally optimal
solution of an optimization problem is found, if there exists no other solution
which evaluates to a better quality.

The best quality can be either the highest or the lowest, depending if it is a
maximization or a minimization problem. The difficulty of a problem depends,
among other factors, on its complexity. Linear optimization problems are prob-
lems where the objective function can be described as a linear function. These
problems are solvable in polynomial time. There are algorithms such as the Sim-
plex method developed by George Danzig [12] which can solve linear problems
efficiently. Non-linear or discrete optimization problems are much harder to solve
efficiently, except for some special cases [61]. In the general case, no algorithm
is known until today which can solve such problems exactly in polynomial time
with a deterministic Turing machine [47].

To search the solution space of combinatorial problems for an optimal solu-
tion, a backtracking algorithm might be used which just enumerates all possible
solutions [11, 50]. However, the solution space of most problems is so vast that
plain enumeration is not feasible in terms of runtime. An approach to reduce the
number of solutions to be searched is to cut away search paths which are known

5

2. Theoretical Foundations 6

Optimization
Techniques

Calculus Based Random Enumerative

Guided
(Metaheuristic)

Non Guided

Tabu SearchSimulated
Annealing

Evolutionary
Algorithms

Evolution
Strategies

Genetic
Programming

Genetic
Algorithms

Non-GuidedGuidedIndirectDirect

Fibonacci Newton Greedy BacktrackingDynamic
Programming

Branch and
Bound

Las VegasTrajectory-
Based

Population-
Based

Local Search

Figure 2.1: Taxonomy of optimization techniques [2]

to be suboptimal as early as possible. A representative of such an approach is
branch and bound which estimates the lower and upper quality bound [35]. How-
ever estimating the quality requires knowledge about the underlying problem.
Another way to tackle large solution spaces of non-linear optimization problems
is to start with a constructed or randomly created solution and iteratively im-
prove it. To improve the solution, problem-independent heuristics – also called
metaheuristics – can be applied. Such metaheuristics are usually based on the
quality of solutions, which allows the abstraction of the algorithm from the un-
derlying problem. Of course, the evaluation of a solution as well as manipulating
a solution are still problem-specific operations, but the algorithmic steps can be
abstracted from the problem. Metaheuristic optimization techniques typically
consist of some stochastic steps and consequently their results underlie a stochas-
tic distribution. It is not guaranteed that a globally optimal solution is found.
Figure 2.1 shows the taxonomy of optimization techniques in a broader context,
yet the following sections will describe only metaheuristic methods in more de-
tail, since they are most relevant for this thesis. Metaheuristic algorithms can
be categorized into trajectory-based and population-based metaheuristics [10].

2.1.1 Trajectory-Based Metaheuristics

Trajectory-based metaheuristics consider only a single solution at the time. In
each iteration step, the algorithm jumps to another solution in the solution
space. The goal is to reach promising regions in the solution space without
getting stuck in a local optimum. The following list gives a short overview of
some well-known trajectory-based metaheuristics:

2. Theoretical Foundations 7

Local Search

Local search (LS) starts with a single randomly generated solution. LS iter-
atively searches the neighborhood of the current solution for better solutions.
There are two types of LS, which differ in the way of selecting a better neighbor:
First improvement LS picks the first solution found in the neighborhood that
is better than the current solution, while on the other hand best improvement
LS evaluates all solutions of the neighborhood and selects the best one. The
improvement step is repeated until a termination criterion such as CPU time or
the number of evaluated solutions is reached. Despite the efficiency and simplic-
ity of this algorithm, it always reaches the next local optimum which it cannot
escape due to the lack of a diversification strategy.

Simulated Annealing

Simulated annealing (SA) is inspired by the annealing of metal or glass where
the structural properties of these materials become more and more stable as
they cool off [33]. SA is an extended version of LS, with the difference that
solutions from the neighborhood which are worse than the current solution, are
selected with a certain probability. That probability depends on a temperature
parameter which decreases over the runtime of the algorithm as well as on the
quality difference. In the early stage of the algorithm, it is more likely to escape
from a local optimum while in the later stages the algorithm intensifies the
search in the current basin of attraction to find an optimum.

Tabu Search

Tabu search (TS) is an extended best improvement neighborhood search [25].
TS stores a history of the last n moves in a FIFO list (the tabu-list). A move
represents the manipulation that was applied to the solution. The moves of the
tabu-list are not allowed to be applied to the current solution. This modification
helps the algorithm to avoid cycles and allows it to escape a local optimum more
easily. The length of the tabu-list (tabu tenure) can be configured and steers the
intensification and diversification of the search.

2.1.2 Population-Based Metaheuristics

In contrast to trajectory-based techniques, a population-based metaheuristic
uses multiple solutions at the time. This set of solutions is also called population.
Exploring the solution space at multiple locations at the time increases the
diversity and makes these algorithms more robust compared to trajectory-based
metaheuristics. Important representatives of population-based metaheuristics
are evolutionary algorithms (EA). There are multiple variations of EAs such
as evolution strategies (ES), genetic algorithms (GA), and genetic programming
(GP).

2. Theoretical Foundations 8

As the name suggests, EAs are inspired by the natural evolution process
which has first been described by Charles Darwin in 1859 [13]. In his concept of
the survival of the fittest, he identified natural selection as one major aspect of
evolution. In an environment which can only host a limited number of individu-
als, there is a higher chance for individuals to survive and reproduce the better
they can compete for the given resources. Another important aspect of evolution
is occasionally occurring mutation. By small modifications of the genetic infor-
mation, individuals can develop new tenures that might or might not help them
to adapt to environmental conditions. Individuals strong enough to survive and
reproduce will inherit their genetic information to their offspring. Though EAs
are inspired by the biological evolution, they are strongly abstracted from it.

In EAs an individual represents a solution. The quality of an individual is
called fitness. Starting with a population of randomly created individuals, some
individuals are selected to be the parents of the next generation. Individuals
with high fitness are more likely to be selected as parents than individuals with
low fitness. The selected parents are then crossed in the recombination step.
Each pair of parents combines its genetic information in a way that the off-
spring contains traits from both parents. After a set of offspring is created,
some individuals are manipulated in the mutation step. The newly created off-
spring represent a new generation and the loop continues with the selection of
new parents. These steps are repeated until some termination criterion such as
CPU time or the number of evaluated solutions is fulfilled. Multiple variations
of EAs have been developed over time. The most influential EAs are described
in the following.

Evolution Strategies

Evolution strategies (ES) were invented in the early 1960’s by Ingo Rechen-
berg [51] and Hans-Paul Schwefel [52]. ES were designed to solve complex con-
tinuous optimization problems with real-vector encoding. The first ES variation
used one parent individual and one offspring individual and is known as (1+1)-
ES. The creation of a new offspring consists of the duplication and mutation of
the parent. In the mutation step each element of the vector of real numbers is
manipulated by adding a value independently sampled from a normal distribu-
tion N(0, σ). Using a normal distribution causes most manipulations to be small
while some are large, which aligns with observations in nature. Initially the σ
parameter was supposed to be fixed, but Rechenberg soon developed a strategy
which adaptively manipulates σ during the optimization process. The adaption
is based on the famous 1/5 rule which says:

“The ratio of successful mutations to all mutations should be 1/5. If
it is greater than 1/5, increase the variance; if it is less, decrease the
variance.”

2. Theoretical Foundations 9

The rule is executed in periodic intervals of k generations. As computational
power increased, a new ES-variant with a population of more than one individual
called (µ+λ)-ES was developed, where µ denotes the size of the population and
λ denotes the number of children. In the selection step, the current population
as well as the children are considered. Another ES-variant called (µ, λ)-ES only
considers the children in the selection step. Instead of adapting the strength of
the mutation by a deterministic rule (the 1/5 rule), the mutation variance can
also be encoded into the individuals. Such an approach is called self-adaptive
which means that the control parameter σ is subject to the same algorithmic
operators (selection, mutation, recombination) as the solution itself.

ES are powerful and efficient problem solvers which employ the mutation op-
erator as the main search operator. Recombination is used in some ES variants,
but generally plays a less important role.

Genetic Algorithms

The traditional genetic algorithm (GA) was invented by John Holland in 1975 [29].
GAs start with an initial population of randomly created solutions, just like ES.
Then a set of individuals is selected to act as parents for the next generation.
The probability of being selected is proportional to the fitness of each individual.
These parent-individuals are then crossed pairwise to create a set of children.
With a certain probability, some of the individuals are mutated. Then the cur-
rent population is replaced with the new offspring. If elitism is applied, one (or
more) of the best individuals are not replaced by offspring. Elitism has proven
to be helpful to avoid losing successful genetic information. Algorithm 2.1 shows
the steps of a GA.

Algorithm 2.1: Standard Genetic Algorithm
1: P ← generate initial population
2: evaluate P
3: while termination criterion not met do
4: Pselected ← select solutions from P
5: Poffspring ← recombine individuals from Pselected
6: mutate some Poffspring
7: evaluate Poffspring
8: P ← Poffspring
9: end while

10: return P0 (best solution)

Other than ES, GAs were originally designed to use binary-strings as solu-
tion representation for individuals. If the natural representation of the problem
is not binary however (vector of real-values, permutation, etc.), a solution has to
be encoded as well as decoded into a binary representation in order to apply the
fitness function on it. Encoding and decoding will occur frequently during an

2. Theoretical Foundations 10

optimization process and therefore uses a lot of resources. Another problem with
binary encoding is that crossover and mutation operations are not always se-
mantically meaningful for a solution when applied on the binary representation.
For example, adding, subtracting or averaging two real numbers is more mean-
ingful as a crossover operation than combining sub-bit-strings of their binary
representation. Therefore, modern GAs often operate on more natural encod-
ings of the problem, thus encoding-specific operators for mutation and crossover
are required.

Offspring Selection Genetic Algorithms

The offspring selection genetic algorithm (OSGA) is an enhanced version of
traditional GAs developed by Michael Affenzeller and Stefan Wagner [1]. The
goal of OSGAs is to avoid losing essential genetic information. Newly created
children are evaluated and compared to their parents. Children that have a
better fitness value than the parents are considered successful. Being better
than the parents actually means having better fitness than the better or the
worse parent. This comparison is guided by the comparison factor parameter
(CompFact). A CompFact of 1 means the offspring needs to be better than the
better parent, a value of 0.5 means it has to be better than the average fitness of
both parents, and a value of 0 means it has to be better than the worse parent.
Only if an offspring is successful, it is allowed to be in the next generation,
otherwise it is discarded. A new parameter called success ratio (SuccRatio ∈
[0, 1]) indicates the quotient of successful offspring required in a new generation.
New children are created by recombination of parents until a sufficient number
of successful children is available to form a new generation. The rest of the
generation is simply filled up with individuals randomly chosen from the non-
successful children. The selection pressure (ActSelPress) is defined by the ratio
of the population size and how many children were actually created in order
to fill the new population. If it becomes more difficult for the algorithm to
achieve improvements of the existing individuals, the selection pressure grows.
The maximum selection pressure acts as an additional termination criterion in
OSGAs.

Genetic Programming

Genetic programming (GP) can be seen as a special variant of EAs that does
not strive to find the optimal input values for a model, but instead to evolve
a computer program which can solve a certain problem [34]. Such a computer
program consists of a tree of statements (terminal and non-terminal) which rep-
resent the functions, operators, and variables. GP has been able to yield human
competitive results in areas such as data-based modeling, electronic design, game
playing, sorting, searching and many more. One form of data-based modeling is
called symbolic regression which is described in more detail in Section 2.1.3.

2. Theoretical Foundations 11

 1.2
 1
 0.8
 0.6
 0.4
 0.2

-30-20-10 0 10 20 30

-30
-20

-10
 0

 10
 20

 30

 0

 0.5

 1

 1.5

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Figure 2.2: Visualization of the two-dimensional Griewank function

2.1.3 Optimization Problems

The following sections describe the optimization problems used in this thesis.

Test-Function Problems

To test and compare optimization algorithms, test-functions (or benchmark-
functions) are widely used. Test-functions have a number of real-valued input
values (dimensions) and are easy to compute. The test-function used in this
thesis is the Griewank test-function:

f(x1, ..., xn) = 1 + 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos(xi√
i
)

for xi ∈ [−600, 600]. It is a real-valued, single objective minimization problem
with an optimal value of 0.0. It is multi-modal which means there are multi-
ple local optima. Figure 2.2 shows the fitness landscape of a two-dimensional
Griewank test-function.

2. Theoretical Foundations 12

Traveling Salesman Problem

The traveling salesman problem (TSP) is a combinatorial optimization problem
which has the goal to find the shortest round-trip through n cities when all
pair-wise distances are known and each city may only be visited once [37, 43].
It has first been formalized in 1930 and is a very well researched optimization
problem. Its complexity increases exponentially when the problem dimension
is increased. The number of possible solutions is defined by (n−1)!

2 . There are
some methods that solve the TSP exactly, however it can also be solved very
efficiently by metaheuristic algorithms. A solution of the TSP is represented as
a permutation of indices of the cities. To evaluate a TSP solution the distances
of all cities in the path are summed up.

Symbolic Regression and Classification Problem

Symbolic regression is a form of data-based modeling which strives to find a
model which expresses the relationship between the input variables and the
output variable in the form of a mathematical expression. This expression can
consist of terminal and non-terminal symbols. The terminal symbols can be con-
stant values or input variables. The non-terminal symbols can be mathematical
functions or conditional expressions.

It is the goal to find a model which provides a maximum fit on the ex-
pected output data. When GP is applied to symbolic regression, these models
are treated as individuals in a population. The input data for GP usually is a
data set with multiple columns, where one column describes the expected out-
put value (θ) and the other columns act as input values. To evaluate a model, it
is applied on each row of the dataset. The output of the model (θ̂) is compared
to the expected output of each row. θ is also called target variable.

Depending on how the comparison to the target variable is made, GP can be
distinguished into symbolic regression and symbolic classification. In symbolic
regression, the target variable is a real number and the error can be measured
as the difference between the target variable value and the model output. In
symbolic classification, the target value is discrete. There is a set of possible
target values, also called classes. Classification works similar to regression, only
that one or more threshold values are computed which separate θ̂ into multiple
classes.

There are multiple possible ways to compute the quality of a model. A fre-
quently used error measure is the mean squared error (MSE) which is defined
as

MSE(θ̂) = E[(θ̂ − θ)2].

Another popular method is called the R-Square correlation coefficient which
is defined by:

2. Theoretical Foundations 13

R2 = 1− MSE

variance

where the variance devotes how irregular the problem is. Another measure for
classification is the accuracy of a solution, which is the percentage of instances
for which the correct class has been predicted.

The evaluation of a model is only applied to a subset of all data sets which is
called the training partition. GP tries to find the optimal model to fit the data in
the training partition. To test if the model is accurate, it is applied to another
subset of datasets called the test partition. The test partition is completely
independent from the training partition and the results indicate how well the
model fits new data.

2.1.4 Operators

This section describes various operators which are used in this thesis. Some
of these operators, such as the selection operators, are independent from the
problem encoding while others, such as the crossover and the mutation opera-
tors, are encoding-specific. The problem encodings that are used in this thesis
are real-vectors (test-functions), permutations (TSP) and symbolic expression
trees. The names of the parameters mentioned in the following sections are from
HeuristicLab.

Selection Operators

The following list provides brief descriptions of the selection operators used in
this thesis:

• LinearRank: The selection probability of an individual is dependent on
its rank in the whole population.

• Proportional: The selection probability of an individual is proportional
to the fitness of an individual.

• Random: Individuals are chosen randomly.
• Tournament: A certain number of individuals (GroupSize) is chosen ran-

domly. The best one of those is selected.
• GenderSpecific: Two parents are selected by using two different selection

strategies (FemaleSelector and MaleSelector) [60].
• GeneralizedRank: Individuals are selected based on their rank with a

varying focus on better quality which is steered by the Pressure parame-
ter [57].

• NoSameMates: A conventional selection method is used (parameter Se-
lector) to select two individuals. If those individuals have very similar
quality (controlled by the parameter QualityDifferencePercentage), the se-
lection is repeated a few times (MaxAttempts parameter) [28].

2. Theoretical Foundations 14

• BestSelector: Individuals are selected pairwise starting with the best.
• WorstSelector: Individuals are selected pairwise starting with the worst.

Mutation Operators for Real-Vector Encoding

• Breeder: One position of a real vector is changed by adding or sub-
tracting a value of the interval [(2−15 · range; 2 · range], where range is
SearchIntervalFactor · (max−min) [41].

• MichalewiczNonUniformAllPositions: The manipulation is performed
in an additive way and the strength of the manipulation is diminished over
time. The IterationDependency parameter defines how much the mutation
should depend on the progress towards the maximum iteration. A higher
value means a stronger dependency on the iterations. This operator ma-
nipulates all positions of a real-vector [42].

• MichalewiczNonUniformOnePosition: This operator works just like
the MichalewiczNonUniformAllPositions operator, but it only manipu-
lates one randomly chosen position of the real-vector [42].

• SelfAdaptiveNormalAllPositions: This operator samples a new value
for each position of the real-vector from a normal distribution where µ is
the current value and σ is defined by the Strategy parameter [9].

• PolynomialAllPosition: Performs the polynomial manipulation on all
positions in the real vector. The Contiguity parameter specifies the shape
of the probability density function that controls the mutation. The Maxi-
mumManipulation parameter specifies the range of the manipulation [16].

• PolynomialOnePosition:Works just like the PolynomialAllPosition op-
erator, but it only manipulates one randomly chosen position of the real-
vector [16].

• UniformOnePosition: Manipulates one position of the real-vector by
sampling a new value with a uniformly distributed probability from the
range [42].

Crossover Operators for Real-Vector Encoding

• Average: Creates a new offspring by calculating the average value of the
parents [9].

• BlendAlphaBeta: Creates a new offspring by sampling a random value
from an interval. The interval is defined by the parent solutions while the
interval in the direction of the better parent is extended by the factor
alpha, in the other direction by the factor beta [56].

• BlendAlpha:Works just like the BlendAlphaBeta operator, but the inter-
val is extended symmetrically in both directions by the factor alpha [56].

• Discrete: For each position in the real-vector, the value of one of the
parents is chosen randomly [9].

2. Theoretical Foundations 15

• Heuristic: Adds the difference between the parent individuals to the bet-
ter individual. The manipulation is weighted by a random factor in the
interval [0; 1) [66].

• SimulatedBinary: The positions of the real-vector are manipulated with
a probability of 50%. If a position is manipulated it is either crossed, con-
tracted, or expanded with equal probabilities. The Contiguity parameter
controls the strength of the manipulation [15].

• SinglePoint: A random breakpoint is chosen in the interval [1, N − 1]
with N = length of the vector. The offspring is constructed from the first
part of one parent and the second part of the other parent [42].

• UniformAllPositionsArithmetic: An offspring is created by calculat-
ing a weighted average of the real-vector positions. The Alpha parameter
controls if the offspring is more similar to the first or the second parent.
The parameter is in the interval [0; 1]. The manipulation is applied to all
positions [42].

• UniformSomePositionsArithmetic: Works just like the UniformAll-
PositionsArithmetic operator, but it is only applied to some randomly
chosen positions of the real-vector [18].

• Local: Works like the UniformAllPositionsArithmetic operator, but the
Alpha parameter is chosen randomly for each position [18].

• RandomConvex: Works like the Local operator, but only one value of
Alpha is chosen for all positions [18].

Mutation Operators for Permutation Encoding

• Insertion: Manipulates a permutation by randomly moving one element
to another position [22].

• Inversion: Randomly selects a part of the permutation and inverts it [21].
• Scramble: Randomly selects a part of the permutation and repositions

its elements randomly [55].
• Swap2: Manipulates a permutation by randomly selecting two elements

and swapping those [21].
• Swap3: Manipulates a permutation by swapping three randomly chosen

elements. It is implemented such that the first three positions are randomly
chosen in the interval [0,N] with N = length of the permutation with all
positions being distinct from each other. Then position 1 is put in place
of position 3, position 2 is put in place of position 1 and position 3 is put
in place of position 2.

• Translocation: Moves a randomly selected part of the permutation to
another position [42].

• TranslocationInversion: Moves a randomly selected part of the permu-
tation to another position and inverts it [24].

2. Theoretical Foundations 16

Crossover Operators for Permutation Encoding

• Cosa: Cosa stands for Cooperative Simulated Annealing [62]. It manip-
ulates the first parent by inserting random parts in normal and inverted
order at different positions which are dependent on the second parent.

• CyclicCrossover2 (CX2): This operator is a variant of the classic cyclic
crossover [21] and has been described in 2009 by Michael Affenzeller [3].
First, it randomly selects a position of the permutation and copies the
first cycle from that position to the offspring. All remaining positions are
copied from the second parent.

• EdgeRecombination (ERX): Creates an adjacency matrix out of the
two permutations containing the outgoing and incoming links for each
position. Starting from a random position a new permutation is created
by choosing the position with the least number of edges from the adjacency
matrix as the next position [64].

• MaximalPreservation (MPX): This operator yields to preserve the
maximum amount of edges from both parent permutations [40]. It pro-
duces an offspring by copying a part of the permutation of the first par-
ent. Further positions are added from the second parent with a hierarchy
of rules to avoid infeasibility. Ulder et al. [58] empirically found that the
length of the part copied at first should be 1/3 of the length of the per-
mutation.

• OrderBased (OBX): Performs a crossover by randomly copying posi-
tions (not necessarily adjacent) from the first parent into the offspring
permutation keeping the order. The rest of the positions are taken from
the second parent also preserving the order [55].

• Order2 (OX2): This operator has been described by Affenzeller et al. [3]
and is based on the traditional order crossover introduced by Eiben [21].
It creates an offspring by copying randomly chosen interval from the first
parent, preserving the positions. Then the missing positions are copied
from the start of the second parent in the order they occur.

• PartiallyMatched (PMX): First copies all positions from the first par-
ent to the offspring. Then a randomly chosen segment of the second par-
ent is copied to the offspring position by position. Whenever a position is
copied, the number at that position currently in the offspring is transferred
to the position where the copied number has been [22].

• PositionBased (PBX): Randomly chooses each position from either the
first or the second parent [55].

• UniformLike (ULX): This operator tries to maintain the position in the
permutation. Each position is randomly copied from one of the parents.
Missing positions are filled randomly [57].

2. Theoretical Foundations 17

Mutation Operators for Symbolic Expression Tree Encoding

• OnePointShaker: Selects one random node of the tree and manipulates
it.

• ReplaceBranchManipulation: Selects a branch of the tree and replaces
it with a newly initialized subtree.

• ChangeNodeTypeManipulation: Selects a random tree-node and chan-
ges the symbol randomly.

• FullTreeShaker: Manipulates each constant and the weight of each vari-
able in the expression tree.

Crossover Operators for Symbolic Expression Tree Encoding

• SubtreeCrossover: Selects one random node of each parent tree and
swaps them. If the size limitation of one of the parent trees is violated the
process is repeated until the size limitation is not violated.

2.2 Parameter Optimization

Different optimization algorithms have different strengths and weaknesses. Some
work well on certain problem classes while others may not. Not only do they have
different performance on different problem classes, they also behave differently
on different problem instances. According to the no free lunch theorem (NFL) in
heuristic search by Wolpert and Macready [65], there exists no algorithm which
performs better than all other algorithms on all problems.

For the task of solving a concrete problem, the first step is to choose a proper
algorithm. However since most algorithms have a set of behavioral parameters
which affect the performance, it becomes even more difficult to find the best
algorithm. The choice of parameter values can have a significant impact on the
performance of the algorithm as demonstrated for behavioral parameters of GAs
in [5] and [46]. Choosing the optimal parameter values for a single algorithm
to solve a single problem is already non-trivial. In 1975 DeJong attempted to
find the optimal parameters for GAs for all problems [14]. While some of these
parameter values had been used as default values for GAs, in most cases the
parameters need to be adapted for each problem instance to yield optimal per-
formance.

Eiben [20, 21] distinguishes between two forms of adjusting parameters: pa-
rameter tuning and parameter control. Parameter control is the commonly prac-
ticed approach of finding the best parameter values before starting the algorithm.
The parameters remain fixed throughout the runtime of the algorithm. In pa-
rameter control, the algorithm starts with initial parameter values which are
changing throughout the run. The taxonomy of parameter setting methods is
outlined in Figure 2.3.

2. Theoretical Foundations 18

Parameter setting

Parameter tuning Parameter control

AdaptiveDeterministic Self-adaptive

before the run during the run

Figure 2.3: Taxonomy of parameter setting [20]

2.2.1 Parameter Control

When the parameter values change during the execution of an algorithm, there
has to be some rule which governs this change. There are several different ap-
proaches to this [20]:

• Deterministic Parameter Control: A deterministic rule is used to
adapt behavioral parameter values without reacting to any feedback from
the search process. These rules are usually based on time or the number
of iterations.

• Adaptive Parameter Control: When an adaptive rule is in place, feed-
back from the search process is used to control how the parameter values
change. For example if the algorithm detects that the population diversity
gets too low, it could increase the strength of the mutation operator and
vice versa. The 1/5 rule of ES is an example of adaptive parameter control.

• Self-Adaptive Parameter Control: Self-adaption is inspired by the
idea of evolution of evolution. The parameters are encoded into the chro-
mosomes of the individuals and undergo the same mechanisms as the indi-
viduals, namely mutation, recombination, and selection. The individuals
with better fitness spread their chromosomes within the population, so
good parameter values are used more often. They can also change over
time due to mutation. However, this approach is only feasible for parame-
ters on the individual-level such as the mutation strength. Population-level
parameters such as the population size or the selection operator cannot
be adapted in such a way.

2.2.2 Parameter Tuning

Even though parameter control has its advantages, it is much more complex to
find rules and methods which can adapt a parameter value in a way that the
algorithm performance benefits, than finding a single parameter value upfront.
Parameter control methods are also mostly tailored for real-valued parameters.

2. Theoretical Foundations 19

When it comes to choosing the right operators for an algorithm, parameter
tuning is commonly used. However, the choice of parameter values remains a
complex task which requires a user to have lots of experience and deep insight
into parameter interdependencies and their impacts. Parameter tuning methods
can be categorized as follows:

• Ad-Hoc: For choosing parameter values, many users rely on conventions
and default values [53]. Based on the default values the parameter values
are varied until acceptable performance is reached. The problem is that
sometimes the optimal parameter values greatly differ from the default
values. In addition, the number of repetitions for a parameterization un-
der test is often too low. How well this approach works depends on the
experience of the user. However, it is usually a very fast approach.

• Experimental: Performing systematic experiments with various param-
eter settings is a more scientific approach. However, trying all different
parameter values and their combinations is impossible in most cases. This
leads to the reduction of combinations or the variation of single param-
eters only. Optimizing parameters one by one does most certainly not
lead to the optimal settings, as most parameters tend to have effects on
others. Bartz-Beielstein devoted a whole book to the field of testing and
experimentation research in evolutionary computation [4].

• Parameter Meta-Optimization: Another approach to parameter con-
trol is to see the search for optimal parameters as an optimization problem
itself. From that perspective, the search for optimal settings has much in
common with traditional optimization problems. Values for a set of input
variables (parameter values) have to be found which maximize the qual-
ity when evaluated (execution of the algorithm). The interdependencies
of the input variables and their effects on the quality are unknown and
the search space is very large. To solve this optimization problem, an op-
timization algorithm is applied as a meta-level optimizer. That concept
is called meta-optimization. It makes sense to use a metaheuristic opti-
mization algorithm to solve that problem, which is the topic of this thesis.
The algorithm which solves the parameter optimization problem is called
meta-level algorithm, whereas the algorithm which is subject to be opti-
mized is called base-level algorithm. Figure 2.4 illustrates the structure of
this idea. The following section gives an overview of existing approaches
in the field of parameter meta-optimization.

2.3 Related Work in Meta-Optimization
Seeing the parameter optimization problem as an optimization problem on its
own is not a new idea. Optimizing parameter values with a meta-level algo-
rithm was given many different names in literature such as meta-evolution,
super-optimization, automated parameter calibration, meta-optimization, pa-

2. Theoretical Foundations 20

Figure 2.4: Meta-optimization concept

rameter meta-optimization etc. [6, 26, 38, 48]. The first work was done in 1978
by Mercer and Sampson [39]. They tried to find the optimal parameter values
for a GA, but their experiments were very limited due to poor computational
resources. Another early work was done by Grefenstette in 1986 who also used
a GA to optimize the discrete parameters of a GA. He optimized against a set
of low dimensional test-function problems to find the generally optimal param-
eters. Grefenstette used gray-code [63] as solution representation and applied
binary mutation and crossover operators. Grefenstette also experienced prob-
lems with limited computational resources, which is why he could only perform
experiments on very low dimensional problems. In 1994, Bäck [6] optimized be-
havioral parameters as well as operators of a GA by using a specialized hybrid of
GAs and ES as meta-level algorithm. The base-level GA needed to be adapted
for his approach. He was the first to use a parallel master-slave approach to
overcome computational limitations.

Since meta-optimization is very time-consuming it was not until recently
that computational power became available at a scale that allowed to perform
realistic experiments. Meissner et al. [38] optimized the parameters of a par-
ticle swarm optimization (PSO) algorithm [19, 32] by applying an optimized
PSO (OPSO) on meta-level. In 2009, Smit and Eiben [53] performed a com-
parison of various specialized meta-optimization techniques. They introduced
some add-ons to meta-optimization to reduce runtime and the number of meta-
level evaluations. A more advanced meta-optimization method called REVAC
has been developed by Nannen and Eiben [45], which is not only able to op-
timize the parameters, but also to estimate the relevance of each parameter.
This additional information allows the algorithm to focus on the most relevant
parameters and thereby improve runtime speed. More recently Pedersen [48]
used the local unimodal sampling (LUS) [49] method as a meta-level optimizer
to find the optimal parameters for a differential evolution (DE) [54] algorithm.
In 2006, Iunescu [31] showed parameter meta-optimization for the optimization
environment HeuristicLab, which is also used in this thesis. Her approach was

2. Theoretical Foundations 21

capable of exchanging the base-level algorithm and problem, but the meta-level
algorithm was a specialized evolutionary algorithm.

Many different approaches to meta-optimization have been developed. The
following list summarizes some of the peculiarities of these approaches:

• In most previous approaches to meta-optimization the implementation is
strongly coupled to the algorithm types that are used. On the meta-level,
specialized variants of existing optimization algorithms were implemented.
Some approaches were able to optimize multiple base-level at the time.
While specialized meta-level algorithms have the advantage that they can
be optimized for a low number of evaluations, the drawback is that they
are not easily exchangeable by other existing algorithms.

• Another disadvantage of specialized meta-level algorithms is the increased
difficulty to reproduce the results by other researchers. When no broadly
known and well-documented algorithms are used, it becomes merely im-
possible to re-implement an algorithm that is only briefly described in a
publication.

• Many approaches use binary encoding for parameter values, mainly due
to performance advantages [7, 23,26, 36]. Modern evolutionary algorithms
use more natural encodings which represent the problem directly.

• Most meta-optimization approaches are custom implementations with com-
mand line interfaces, APIs, or rudimentary graphical user interfaces. This
makes using these approaches difficult for people who were not involved
in the development.

• Some authors did use parallelization concepts in their approaches, but
most of them just mentioned that parallel and distributed computation is
highly suitable for meta-optimization.

• Most approaches do only optimize against one optimization goal, which is
the average quality achieved by the base-level algorithm. Other goals such
as robustness and effort are only considered by few [48].

Chapter 3

Technical Foundations

This chapter introduces the optimization environment HeuristicLab which is
used throughout this thesis as well as the distributed computation infrastructure
HeuristicLab Hive. Without Hive it would not have been possible to run such
large scale experiments for this thesis.

3.1 HeuristicLab
HeuristicLab (HL) is a paradigm independent, extensible, and open environment
for heuristic optimization. It was originally created by StefanWagner in 2002 [59]
and is now available as an open source project which is actively developed by the
Heuristic and Evolutionary Algorithms Laboratory (HEAL)1. It is implemented
in the programming language C# and uses version 4.0 of the Microsoft .NET
framework. HL has been designed to be easy to use for experts, practitioners,
and students. It uses a very open and flexible algorithm model which allows to
design algorithms without writing any code. The following sections explain the
most important concepts of HL.

3.1.1 Key Concepts

The following list provides a short description of the most important concepts
of HL:

• Plugin-Based Architecture
The main architectural concept in HL is its plugin system. In its core,
HL only consists of a lightweight mechanism which is able load HL plug-
ins. These plugins are dynamically discovered at runtime and can define
dependencies on each other. The advantage of this system is that it is
possible to add new functionality by just adding a new plugin. A plugin
could add a new algorithm, a new problem, or a new user interface to the
environment. In contrast to monolithic systems, it is possible to add new

1http://heal.heuristiclab.com

22

http://heal.heuristiclab.com

3. Technical Foundations 23

functionality without compiling the whole application. It also enables the
deployment of bundles which are tailored to specific scenarios.

• Graphical User Interface
Dealing with metaheuristic optimization algorithms on an API level is
common for many frameworks in this field. Although a programming in-
terface provides a high degree of flexibility for an expert user, it might not
be the best choice for practitioners and students. That is why usability has
always been a core aspect of HL. All components in HL can be viewed and
manipulated in a meaningful way. There are easy ways to import problem
definitions, configure algorithms, and analyze results so that inexperienced
users as well as experts can use the system comfortably.

• Cloning and Persistence
Another core concept in HL is that all items provide a mechanism for
cloning and storing as a file. This means that algorithms, problems, and
datasets can be stored at any time which meets the requirement of repli-
cability. These mechanisms are designed in such a way, that developing
new plugins requires very little implementation overhead.

3.1.2 Algorithm Model

There exists a large number of metaheuristic optimization algorithms with very
different ideas and concepts. In addition, new algorithms and variations of ex-
isting algorithms are created steadily. HL addresses these demands by using a
very generic algorithm model which uses radical abstraction. A HL algorithm
is represented by a sequence of operations. Each of these operations manipu-
lates data and the algorithm is executed by an engine. These three components
(data, operators, and execution) represent the algorithm model in HL and are
described in the following.

Data Model

Data values are used according to the HL data model. It wraps many standard
data types such as integers, doubles, strings, or arrays into HL objects. There-
fore, each of these values can be persisted, cloned, and viewed. In the traditional
imperative programming model, each variable can be accessed via its variable
name which points to the actual value in the memory. In the HL data model a
variable is represented by a key-value-pair. The key is a string, representing the
name of the variable and the value is a HL object.

These variables are arranged in scopes which are collections of variables.
Scopes are combined in a hierarchical way, representing different layers of ab-
straction. An Operator is applied on a single scope. The operator can read and
manipulate variables from that scope. It also has access to the parent-scope and
to the sub-scopes. If a variable cannot be found in the current scope, the lookup
is repeated in the parent scopes. Therefore, a variable is visible to all sub-scopes,

3. Technical Foundations 24

but can be overridden in one of them by a variable with the same name.

Operator Model

As already mentioned an algorithm consists of a sequence of executable instruc-
tions (operators). An operator can also be seen as a statement in imperative
programming. In the operator model of HL operators are represented as ob-
jects. The major tasks of an operator is to manipulate data and to define which
operator will be executed next. To manipulate data, each operator can define
a list of parameters. Just as functions in imperative programming languages,
these operators have formal and actual parameters. Formal parameter names
define how the parameter is used inside the operator, whereas the actual pa-
rameter name defines by which name the parameter should be looked up in the
scope tree. This concept makes the implementation of an operator reusable and
independent from the algorithm they are used in.

The second purpose of HL operators is to decide which operator should
be executed next. This mechanism essentially defines the flow of an algorithm.
Each operator-instance may contain references to other operators. When an
operator is executed, it decides which of its sub-operators should be executed
next. Therefore, operators can also be used just like if- or switch-statements in
imperative programming. Since such an operator-graph may contain cycles, it is
possible to create loops. With the HL algorithm model it is possible to represent
any algorithm that can be described in imperative programming languages, since
major concepts such as sequences, branches, loops and recursion can be used.

Execution Model

A HL algorithm is an operator-graph which can be executed by an engine. A
step in the algorithm consists of a tuple containing an operator and the scope
it will be applied on. This tuple is called operation. An algorithm starts with
an initial operation and an empty scope. The initial operation is put on a stack.
In each step of the algorithm, the engine pulls an operation from the stack and
executes it. An operation may return one or more successor operations which
are pushed onto the stack in reversed order. The engine continues to execute
operations from the stack until it is empty.

The separation of the algorithm definition and the execution engine has the
advantage that the same algorithm can be executed by different kinds of engines.
As many real-world applications of heuristic optimization are very runtime con-
suming, parallelization is a key requirement for optimization environments. HL
provides such a capability through a parallel engine. Some operators produce
multiple successor operations which are applied on different sub-scopes. If these
operations are independent from each other, they can be parallelized. The eval-
uation of solution candidates in population-based algorithms is one example for
that. Going even further, HL provides another engine – the Hive engine – which

3. Technical Foundations 25

is capable of executing these operations in the distributed computation envi-
ronment HeuristicLab Hive which is described in more detail in the following
section.

3.2 HeuristicLab Hive

HeuristicLab Hive is an elastic, scalable, and secure infrastructure for distributed
computation. It is an open source system implemented in C# using version 4.0
of the Microsoft .NET framework. Hive consists of a server with a database and
a number of computation slaves. A user can upload a job to the Hive server via
a web service interface. Then the server distributes the jobs among the available
slaves and retrieves the results after they are finished. The following list shows
the most important aspects and features of HeuristicLab Hive:

• Generic Usage
Though the main purpose of HeuristicLab Hive is to execute HL algo-
rithms, it is designed to be completely independent from HL. Any type of
job can be executed on Hive. A job is a .NET object which implements
a certain interface. Hive offers a web service where jobs can be added,
controlled, and removed.

• Elasticity
Slaves can be added and removed at any time, even while they are calcu-
lating jobs. Therefore, jobs have the ability to be paused and persisted.
The advantage of an elastic system is to be able to add resources at peak
demand times and remove them if they are needed otherwise. There is no
automatic snapshotting of job results, but a user can pause, modify, and
resume a single job any time.

• Heterogeneity
Slaves with different properties and constraints are supported. CPU per-
formance and available memory can differ in every slave. Job scheduling
respects these constraints. Hive is also independent of the network infras-
tructure. A slave can be directly connected through a fast high-speed link
or it can be far away in a secured company network. The only requirement
for slaves is to have the .NET 4.0 framework installed. The importance
of network speed depends on the kind of jobs. For long running jobs, the
network performance is more irrelevant while for short running jobs it can
be a major overhead.

• Schedule
It is possible to define schedules for slaves and groups of slaves. A schedule
defines when a slave is allowed to calculate and when it is not. This is
particularly useful to use office computers at night which would be unused
otherwise.

3. Technical Foundations 26

S
la

ve

(W
in

d
o

w
s

S
e

rv
ic

e
)

S
e

rv
e

r
(I

IS
)

C
li

e
n

t
(H

e
u

ri
st

ic
La

b
)

Hive Service (WCF)

Heartbeat
Manager

Executor

Service Access

AppDomain / Job #1AppDomain / Job #1AppDomain / Job #1AppDomain / Job

Hive Data (SQL Server)

Core
Heartbeat
Manager

Plugin
Manager

Service Access

Optimizer Job Engine Job

Administration

ASP.NET Authentication
(SQL Server)

Config
ManagerExperiment Manager Hive Engine

Lifecycle
Manager

Transaction
Manager

Data Access Layer ASP.NET Authentication

Authorization
Manager

Figure 3.1: Hive components

• Plugin-Independency
Slaves are lightweight applications and do not contain the assemblies
needed to execute a job. When a job is uploaded, the files and assem-
blies that are needed to deserialize and execute the job are automatically
discovered and also uploaded. Assemblies and files are grouped in plugins
which are versioned. Hive takes care of distributing, storing, and caching
those files efficiently. On the slave, these plugins are loaded inside a .NET
AppDomain and the job can be executed. The possibility to submit a
job with versioned plugins makes Hive independent of already deployed
plugins and eliminates the need to update slaves.

• Security
Hive puts emphasis on security. Users can control on which slaves their
jobs should be computed. Hive ensures confidentiality and integrity of all
communication by using X.509 certificates and message level encryption.
Since a user can upload custom assemblies to the system, it is crucial that
on a slave each job is executed in its own sandbox. Sandboxes are realized
by .NET AppDomains with restricted permissions.

3.2.1 Components

Figure 3.1 illustrates the main components of HeuristicLab Hive. The following
section describes these components.

3. Technical Foundations 27

• Server
The server API is exposed as a WCF2 web service which is hosted in IIS3

7.5. It offers methods to upload jobs and plugins, to fetch state informa-
tion about jobs and to download results. It also exposes methods to control
and administer the system including tasks such as grouping slaves or ana-
lyzing system performance. ASP.NET Authentication4 is used to authen-
ticate users and determine roles. The Authorization Manager authorizes
users to access certain pieces of data. The Transaction Manager helps to
encapsulate business processes in transactions and applies exception han-
dling and rollbacks if necessary. The Lifecycle Manager contains methods
which need to be executed periodically, usually once every minute. Among
these lifecycle methods is the detection of timeouts of slaves, which leads
to rescheduling of lost jobs. In addition, statistical data is computed ev-
ery minute to enable the analysis of the system utilization over time. The
Heartbeat Manager handles incoming heartbeats from slaves. It decides
if a slave gets another job or not depending on the time schedule, free
resources and the assignment of resource groups for the jobs. The Data
Access Layer abstracts the details of the database which is accessed using
Linq-To-Sql5.

• Slave
The slaves run as a windows service. The reason for this choice is that
the slave can run no matter which user is logged in, even if no user is
logged in. The Config Manager maintains state measures about the slave
such as CPU usage, used memory, and available CPU cores. The Heartbeat
Manager sends periodic messages to the server, reporting which jobs are
calculated and how much resources (CPU cores, memory) are available.
The server responds with a list of messages containing the next actions for
the slave. These messages are queued and dispatched by the Core com-
ponent. Communication between server and slave is always initiated by
the slave to avoid problems which may be caused by NAT6 and firewalls.
Figure 3.2 shows an exemplary infrastructure with slaves deployed on var-
ious different locations behind firewalls. It also shows that it is possible to
hook up external computers to be Hive slaves. It could enable companies to
use their own computational resources at specific times (at night) whereas
scheduling and distribution is done by the Hive server. The core controls a
list of Executors which are responsible for sandboxing and executing jobs.
The Plugin Manager takes care of fetching, caching, and copying plugins
for a sandbox. The Executor needs to watch the calculated jobs, listen to
certain events and observe failed jobs.

2Windows Communication Foundation
3Microsoft Internet Information Server
4http://msdn.microsoft.com/en-us/library/eeyk640h.aspx
5http://msdn.microsoft.com/en-us/library/bb386976.aspx
6Network address translation - http://en.wikipedia.org/wiki/Network_address_translation

http://msdn.microsoft.com/en-us/library/eeyk640h.aspx
http://msdn.microsoft.com/en-us/library/bb386976.aspx
http://en.wikipedia.org/wiki/Network_address_translation

3. Technical Foundations 28

Company Y

University of Applied Upper Austria

HPC Blade

Cluster
Lab Computers

Company X

Hive Server

Figure 3.2: Exemplary Hive slave deployment with external companies

• Client
The HL client for Hive features an administration user interface. It allows
creating and arranging slave groups and observing the slaves’ current state.
HL currently supports two ways of executing algorithms in the Hive. Either
a complete HL algorithm can be sent to Hive (Optimizer Job), or parts of
an algorithm are executed on the Hive (Engine Job):
– Optimizer Job

An optimizer job encapsulates a HL optimizer which may be a single
algorithm or an experiment containing a set of algorithms.

– Engine Job
An engine job encapsulates a HL Engine which executes an operator
graph. Such an engine can be initialized with parts of an algorithm.
This is what the Hive Engine does when a UniformSubScopesPro-
cessor occurs in an operator graph. A UniformSubScopesProcessor
means that an operator needs to be executed on a number of scopes.
For each scope, an Engine Job is created and encapsulates the opera-
tor and the corresponding scope. Evolutionary algorithms for example
need to evaluate each solution candidate of a population. If such an
algorithm is executed by the Hive Engine, an Engine Job is created
for each solution candidate and submitted to the Hive. The Hive En-
gine then waits until all jobs are finished and continues executing the
algorithm.

All meta-optimization experiments presented in Chapter 6 are executed us-
ing the Hive Engine, which helped a lot to do so much computation. Also most
of the cross-test experiments were executed using Hive. The computational re-
sources were provided by the University of Applied Sciences Upper Austria.

Chapter 4

Requirements

This chapter is dedicated to the goals of this thesis and the requirements for
the implementation. Based on the analysis of previous approaches in the field of
parameter meta-optimization (PMO) in Chapter 2, the following requirements
have been identified:

• Exchangeability: The implementation should be as generic as possible.
It should not be necessary to do any adaptations to the meta-level and the
base-level algorithm. Any meta-level algorithm should be able to optimize
the parameters of any base-level algorithm. This would allow using the
power of existing algorithms and new algorithms on the meta-level in the
future.

• Multiple Problems: It should be possible to optimize algorithm param-
eters for multiple base-level problem instances at the same time, since it
is often desirable to find the optimal settings for a class of problems and
not for a single instance.

• Multi-Objective: The average solution quality that is achieved by an al-
gorithm with a certain parameterization should not be the only optimiza-
tion goal. There should also be the possibility to optimize for maximum
robustness or minimum effort.

• Appropriate Encoding: Since many researchers in the past used binary
encoding for parameter values, the implementation should use an encoding
which represents the parameters in a more natural way (integers, doubles,
booleans, operators). Also the optimization of parameters of operators
should be possible.

• Modularity: The implementation should use exchangeable operators for
manipulating parameter values in solution candidates. For each data type
there should be specialized operators which can be selected by the user.
The implementation should also use the HL plugin infrastructure and its
automatic type discovery system, so that new operators can easily be
added by new plugins, without changing any existing code. It should also
be easy to add support for new parameter data types.

29

4. Requirements 30

• Symbolic Expression Grammar: Despite supporting standard data
types, the implementation should also be capable of optimizing symbolic
expression grammars for symbolic regression and classification.

• Configurability: A user should be able to decide which parameters sho-
uld be optimized. Further, it should be possible to define in which range
each parameter value should be optimized. In that way a user can use his
expertise and narrow search ranges to reduce the size of the search space.
It should also be possible to define which operators should be used in the
base-level algorithm.

• Exhaustive Search: It should be possible to use the configuration of
search ranges to perform an exhaustive search within these ranges. This
should be possible for multiple parameters and all of their combinations.
Of course, there has to be some sort of step size to keep the number of
possible parameter combinations tolerable.

• Parallelization: The implementation has to be designed in such a way
that parallel and distributed execution of the meta-level algorithm is pos-
sible.

• Usability: Following one of HL’s most important concepts, the imple-
mentation should have a rich and easy to use graphical user interface. It
should allow even non-experienced users to get started quickly.

• Analytics: There should be possibilities to analyze and observe the pro-
gress of the meta-level algorithm.

Despite the functional requirements for the implementation, this thesis sho-
uld prove the viability of the implementation by performing a number of different
optimization scenarios:

• Varying Problem Dimensions: The optimal parameters for a GA sho-
uld be found for multiple base-level problems with different problem com-
plexities.

• Varying Generations: The optimal parameters for a GA should be found
for multiple base-level problems with a different number of base-level al-
gorithm generations.

• Varying Problem Instances: The optimal parameters for a GA should
be found for different instances of the TSP.

• Different Meta-Level Algorithms:Different meta-level algorithms sho-
uld be used to optimize the same base-level algorithm.

• Symbolic Expression Grammar for Regression: The symbolic ex-
pression grammar should be optimized for a symbolic regression problem.

• Symbolic Expression Grammar for Classification: The symbolic ex-
pression grammar should be optimized for a symbolic classification prob-
lem.

Chapter 5

Implementation

Based on the requirements defined in Chapter 4 the PMO problem for HL was
implemented. This chapter describes the design of this implementation.

5.1 Solution Encoding

Any optimization problem in HL has to specify how solution candidates are
represented. This representation is called solution encoding. An optimization al-
gorithm may need to apply various operations on solution candidates, which ma-
nipulates them (e.g., mutation, or recombination of solution candidates). These
encoding specific operations have to be provided by the solution encoding im-
plementation. Several solution encodings are available in HL such as binary
encoding, permutation encoding, vectors of real values, or vectors of integer
values.

However, none of these existing solution encodings can be used to represent
the parameters of an algorithm. Therefore, a new solution encoding had to be
implemented. In the following sections, the parameter system of HL and the
solution encoding for PMO are described.

5.1.1 Parameter Trees in HeuristicLab

HL features a generic concept for parameterization. Objects that are param-
eterizable implement the interface IParameterizedItem. It exposes a collection
of IParameter objects. A class implementing this interface is responsible for
adding IParameter objects to the collection when it is constructed. In HL many
objects are parameterizable. Naturally, algorithms are among them. But also
problems do have parameters which are relevant for problem specific operators.
Even some operators have parameters. An example is the TournamentSelector
operator which has a GroupSize parameter. Since some algorithms have op-
erators as parameters, a composite tree structure of parameters emerges. The
following list explains the different types of parameters in HL:

31

5. Implementation 32

+ActualValue : IItem
+DataType : Type
+ExecutionContext : ExecutionContext
+Hidden : bool

IParameter

+Value : T

IValueParameter<T>

+ActualValue : T

ILookupParameter<T>

IValueLookupParameter<T> IScopeTreeLookupParameter<T>

Figure 5.1: Interfaces for parameters in HL

• IParameter: Represents the base interface for all other types of param-
eters. Offers the property ActualValue, but does not necessarily store any
value. It defines the data type of the value. The data type restricts the va-
lue which is assignable to the parameter. Figure 5.1 shows the inheritance
structure of parameter types.

• IValueParameter: Stores the actual value and exposes it as the property
Value. The property ActualValue just returns that value.

• ILookupParameter: Does not store the value, but rather searches the
scope tree upwards for a variable with the name defined by the ActualName
property. Reading and writing the ActualValue actually means reading and
writing that found variable value. A lookup parameter is like a reference
to another variable.

• IValueLookupParameter: Derives from IValueParameter and ILookup-
Parameter. It is a combination of these two parameter types. If a value is
set it behaves like a value parameter, but if the value is null it behaves
like a lookup parameter.

• IScopeTreeLookupParameter: Searches the scope tree downwards and
returns a collection of all occurrences of variables with a name defined by
ActualName. A search depth specifies how deep the scope tree should be
searched.

It is important to distinguish between these parameter types since it does
not make sense to optimize all of them. It actually only makes sense to optimize
IValueParameters and IValueLookupParameters. They are the only types that
contain an actual value. An IScopeTreeLookupParameter is more of a collector

5. Implementation 33

PopulationSize
ValueParameter<IntValue>

Elites
ValueParameter<IntValue>

MaximumGenerations
ValueParameter<IntValue>

MutationProbability
ValueParameter<DoubleValue>

Crossover
ConstrainedValueParameter<ICrossover>

Selector
ConstrainedValueParameter<ISelector>

Mutator
OptionalConstrainedValueParameter<IMutator>

Genetic Algorithm

Tournament Selector

GroupSize
ValueLookupParameter<IntValue>

Evaluator
ValueParameter<ProblemEvaluator>

ProblemSize
ValueParameter<IntValue>

Single Objective Test Function Problem

Figure 5.2: This figure shows the parameters and the parameter types of a GA,
a test function problem and a tournament selection operator.

of values from subscopes and shall not be optimized. An ILookupParameter is
just a reference to another variable. Therefore, it does not need to be optimized
either.

A typical algorithm in HL has a problem and a set of parameters. As an
example, Figure 5.2 shows the parameters of a GA (see Section 2.1.2), a test-
function problem and a tournament selection operator. Some parameter values
of the GA are parameterizable, but this is dependent on the actual value. For
example there are some selection operators which do not have parameters, but
others do have parameters such as the tournament selector. The GA and the test-
function problem just have value parameters whereas the tournament selector
has one value lookup parameter. Some of these value parameters are constrained
which means there is a limited set of types which are assignable to them. The
mutation and crossover operators for example are limited to the operators which
are compatible with the solution encoding of the problem. Since a GA can
also run without mutation, the mutation operator is optional which means this
parameter can be null.

5.1.2 Parameter Configuration Trees

As described in the beginning of this chapter, optimization problems in HL need
a solution encoding which provides the representation of a solution candidate as
well as operations to manipulate it. For PMO, the representation of a solution
candidate would be a tree of concrete parameter values for a parameterizable
object. An additional requirement for PMO is that the way how each parameter
should be optimized needs to be configurable. It should be possible to define
which parameters of a parameterizable object should be optimized and for each
of these parameters different configuration options should be available, depend-

5. Implementation 34

+Parameterize()

+ParameterName : string
+ValidTypes

ParameterConfigurationValueConfiguration

ParameterizedValueConfiguration

+Range : IRange

RangeValueConfiguration NullValueConfiguration

1

1

+AlgorithmConfiguration
+ProblemConfiguration

ParameterConfigurationTree

+Randomize()
+Mutate()
+Cross()
+CalculateSimilarity()

+Optimize : bool
+ActualValue

IOptimizable

SingleValuedParameterConfiguration

+GetRandomValue()
+GetCombinations()

+UpperBound<T>
+LowerBound<T>
+StepSize<T>

IRange<T>

Figure 5.3: Classes of the parameter configuration tree solution encoding for
PMO

ing on the type of parameter.
The solution representation for PMO for HL is called parameter configuration

tree. Just as parameter trees, parameter configuration trees use a composite tree
data structure. As shown in Figure 5.3, all elements of the tree do implement the
interface IOptimizable. If an IOptimizable will be optimized or not optimized,
depends on the property Optimize. The interface also offers the property Actual-
Value which returns the current value of a parameter. The method Randomize()
samples a new random value. Cross() andMutate() are needed for recombination
and mutation in evolutionary optimization algorithms. The method Calculate-
Similarity() calculates a value between zero and one which expresses the similar-
ity between two parameter trees. This is needed for population diversity analysis
in population-based algorithms, which is further discussed in Section 5.4.3. The
following list explains the elements of the parameter configuration tree:

• ParameterConfiguration: One parameter is represented by a Parame-
terConfiguration object. It contains information about the parameter such
as the name, the allowed data types, and a list of possible values. Each of

5. Implementation 35

these possible values is represented as a ValueConfiguration. It also stores
the index of the currently selected ValueConfiguration.

• ValueConfiguration: A ValueConfiguration represents a possible value
for a parameter. It acts as an abstract base class for different types of
configurations and encapsulates a concrete HL data type.

• RangeValueConfiguration: This type of value configuration is used for
numeric data types of parameter values. It allows to define a numeric range
(IRange) in which the optimal parameter value may be searched. The range
is used for sampling random values as well as for checking violations of
the range constraint after a recombination or mutation step.

• IRange<T>: A range has a lower bound, an upper bound and a step
size (further explained in Section 5.1.3). It supports sampling new random
values from that range (GetRandomValue()) as well as enumerating all
possible values of that range with respect to the step size. This enumerative
approach can be used to perform an exhaustive search (see Section 5.4.5).

• ParameterizedValueConfiguration: This type is used for types of pa-
rameter values which happen to be parameterizable themself. It contains
a collection of parameter configurations, which corresponds to the param-
eters the value has.

• NullValueConfiguration: This type of value configuration represents
the value null for a parameter. Since some parameters allow null as a
value, there needs to be a special value configuration in such a case.

• SingleValuedParameterConfiguration: This type allows only one va-
lue configuration. In some cases it does not make sense to configure differ-
ent values for a parameter value. The SingleValuedParameterConfiguration
also allows to simplify the user interface by omitting the choice of different
value configurations.

• ParameterConfigurationTree: This type is the root element for a pa-
rameter configuration tree. It derives from ParameterizedValueConfigura-
tion and contains two single-valued parameter configurations. One stands
for the algorithm and one for the problem. They are single-valued, be-
cause it would be too confusing for a user to be able to configure multiple
instances of algorithms and problems for an optimization process.

To construct a parameter configuration tree, the parameter tree of the al-
gorithm and the problem are traversed. For each IParameterizedItem a new
ParameterizedValueConfiguration is created. Out of each parameter of the pa-
rameterized item, a new ParameterConfiguration is instantiated. When a Pa-
rameterConfiguration is constructed, it analyzes the assignable data types for
the parameter and creates a list of valid values (one for each possible data type).
Out of the valid types for the parameter, a list of ValueConfigurations is cre-
ated. Depending on the type of each value, specialized value configurations are
instantiated. For numeric types, RangeValueConfigurations are created and for

5. Implementation 36

ParameterConfigurationTreeGenetic Algorithm

Population
Size

100

Mutation
Probability

0.05

Selector

Tournament
Selector

ParameterConfiguration
(PopulationSize)

ActualValue *

Range-
ValueConfigurations:

 Value: 100

 Value: 200

 Value: 300

ParameterConfiguration
(MutationProbability)

ActualValue *

Range-
ValueConfigurations:

 Range: 0.0-1.0;0.01
 Value: 0.05

ParameterConfiguration
(Selector)

ActualValue *

Parameterized-
ValueConfigurations:

 Proportional

 LinearRank

 Tournament

...

ParameterConfiguration
(GroupSize)

ActualValue *

Range-
ValueConfigurations:
 Range: 2-50;1
 Value: 4

ParameterConfiguration
(...)

ParameterConfiguration
(...)

ParameterConfiguration
(...)

SingleValued-
ParameterConfiguration

(Algorithm)

ActualValue *

Parameterized-
ValueConfigurations:

 GeneticAlgorithm

SingleValued-
ParameterConfiguration

(Problem)

ActualValue *

Parameterized-
ValueConfigurations:

 TravelingSalesman

ParameterConfiguration
(...)

ParameterConfiguration
(...)

ParameterConfiguration
(...)

GroupSize

4

TravelingSalesman
Problem

Figure 5.4: Object graph of a simplified example of a PMO solution encoding
for the parameters of a GA

IParameterizedItems, the construction continues with new ParameterizedValue-
Configurations. Figure 5.4 shows a simplified parameter tree of a GA along with
the corresponding parameter configuration tree and Figure 5.6 shows the user
interface for the configuration options of a GA.

5.1.3 Search Ranges

For numeric values, a search range can be specified. Search ranges enable a user
to utilize knowledge about some parameters to reduce the size of the solution
space and to reduce runtime. If for example a user wants to optimize the pop-
ulation size of a GA, the meta-level algorithm needs to know in which range
the value should be, because it cannot create infinite values. Using maximum
integer or long values as upper limits would result in extremely long runtimes of
the base-level algorithm, so this is not an option either. Instead, each RangeVal-
ueConfiguration contains an object of the type IRange<T>. A range has a lower
bound, an upper bound, and a step size. The step size defines what the resolu-
tion of the range should be. For example if the step size is 5, the lower bound is
100 and the upper bound is 120 then the optimization process can only use the
values {100, 105, 110, 115, 120}. Ranges can be used both for integer and for

5. Implementation 37

Figure 5.5: Shows the configuration options for the MutationProbability param-
eter. The left list-box shows the parameter configurations of a GA. The middle
list-box shows a list of value configurations and the right panel shows the config-
uration options for a range.

double values. Figure 5.5 shows the user interface for the configuration options
of the MutationProbability parameter of a GA.

Generally, it is a good idea to use very small step sizes. However, if a user
wants to use the parameter configuration tree to do an exhaustive search of
parameter values (see Section 5.4.5), the step size needs to be sufficiently large,
or otherwise the number of combinations grows too large. Another reason to
use large step sizes is to increase the probability to hit a cached solution (see
Section 5.4.4).

5.1.4 Symbolic Expression Grammars

As stated in Chapter 4, PMO should support the optimization of symbolic
expression grammars. As the grammar is a complex data type, some special
extensions had to be made to make such grammars configurable and optimizable.
Due to the flexible design of parameter configuration trees, such an extension
was easily possible.

Symbolic Expressions in HeuristicLab

Symbolic expression grammars in HL are complex value types, which are used
as parameters in symbolic regression and classification problems. A grammar
contains a list of symbols which are used to construct symbolic expressions
(solutions). The symbols can be mathematical and logical expressions as well as

5. Implementation 38

Figure 5.6: Shows the configuration options for the Selectior parameter. The
middle list-box shows a list of possible values (value configurations). Each of them
can have child-parameters which can also be optimized.

constants and variables. The grammar defines the arity of the symbols and how
they can interact with each other. An IfThenElse symbol for example has to
have three child symbols – one is restricted to boolean return values, the others
(then and else) can be arbitrary expressions. Each symbol defines an initial
frequency which affects the probability of a symbol being used in randomly
created expressions. The Constant symbol has properties that affect the strength
of the manipulation when such a node is mutated:

• MinValue: The minimum value the constant can have.
• MaxValue: The maximum value the constant can have.
• ManipulatorMu/Sigma: Used in an additive manipulation operation

where a value is sampled from a normal distribution N (µ, σ). The sampled
value is added to the constant.

• MultiplicativeManipulatorSigma: Used in a multiplicative manipula-
tion. In this case the constant is multiplied with a value sampled from a
normal distribution N (1.0, σ).

Additive and multiplicative manipulations are used randomly with a chance
of 50% for each constant in a symbolic expression. The Variable symbol also has
properties that affect the strength of manipulation:

5. Implementation 39

• WeightMu/Sigma: Each variable has a weight which is also modified
in mutation operations. WeightMu and WeightSigma are used when the
weight is first initialized from a normal distribution N (µ, σ).

• WeightManipulatorMu/Sigma: Used in an additive manipulation op-
eration of the weight where a value is sampled from a normal distribution
N (µ, σ). The sampled value is added to the constant.

• MultiplicativeWeightManipulatorSigma:Used in a multiplicative ma-
nipulation of the weight. In this case the constant is multiplied with a value
sampled from a normal distribution N (1.0, σ).

Encoding of Symbolic Expression Grammars

The fact that symbolic expression grammars are custom types that do not use
the traditional parameter/value paradigm, some special value configurations had
to be implemented:

• SymbolicExpressionGrammarValueConfiguration: This class is de-
rived from ParameterizedValueConfiguration and represents the configura-
tion for a symbolic expression grammar. When it is instantiated, it iterates
over all symbols of the grammar and creates a SingleValuedParameterCon-
figuration for each one. Each symbol is therefore treated as a parameter.
It is single-valued because it does not make sense to add different values
(symbols) and it is more convenient in the user interface.

• SymbolValueConfiguration: This class is also derived from Parameter-
izedValueConfiguration. It represents the configuration for a single symbol.
When it is instantiated, it creates a value configuration for each property
the symbol has. In any case, this involves the initial frequency of a symbol.
In the case of the Constant and the Variable symbol this also involves the
properties mentioned above.

These simple extensions of the parameter configuration tree make further
adaptations obsolete. Crossover and mutation operations work just the same, as
all symbols and properties are treated as parameters with basic data types.
Therefore, the existing crossover and mutation operators (described in Sec-
tion 5.3) can be used. The user interface is able to display the symbols just
as if they were normal parameters. Figure 5.7 shows the configuration of a prop-
erty of the Variable symbol in a symbolic expression grammar.

5.2 Fitness Function
In heuristic optimization, one step of the optimization process is to evaluate the
quality of a solution candidate. This quality is also called fitness of a solution
candidate. Based on the fitness of the solution candidates the selection step
is performed in evolutionary algorithms. To evaluate the quality of a set of
parameter values the base-level algorithm needs to be executed. Since the result

5. Implementation 40

Figure 5.7: Configuration options of the Variable symbol

of an optimization algorithm underlies a stochastic distribution, it is necessary
to repeat the execution n times. Based on the requirements defined in Chapter 4,
the quality of a PMO solution candidate consists of the following components:

• Solution Quality (q): The average achieved quality of n base-level algo-
rithm runs.

• Robustness (r): The standard deviation of the qualities of n base-level
algorithm runs.

• Effort (e): The average number of evaluated solutions of n base-level
algorithm runs. The number of evaluated solutions was chosen because
the execution time is not a reliable measure in a heterogeneous distributed
computation environment (see Section 3.2).

There are two options to tackle multi-objective problems. The simplest one
is to compute a weighted sum or average out of the objective values. Another
option would be to compute a pareto front [30] with the NSGA-II [17]. For
the sake of simplicity, a weighted average was chosen for this implementation.
Another requirement defined in Chapter 4 is that optimal parameter values
for multiple problem instances should be found. Therefore, PMO allows a user
to add multiple base-level problem instances. In order to evaluate the solution
quality the base-level algorithm needs to be executed n times for each base-level
problem instance.

However, different problem instances might yield quality values in different
dimensions. An example would be to optimize a GA for three Griewank [27] test-
functions in the dimensions 5, 50 and 500. A GA with a given parameterization
might result in the quality values 0.17, 4.64 and 170.84. Using a simple arithmetic
mean for the fitness function would overweight the third problem a lot. It is the
goal to find settings which are suited for each problem equally well. To tackle
this issue, normalization has to be applied on all results of each run (q, r, e). The

5. Implementation 41

reference values for normalization are the best values from the first generation
(rq, rr, re). Furthermore each objective needs to be weighted (wq, wr, we). The
quality (Q) of a solution candidate (c) for m base-level problems is thereby
defined as:

Q(c) = 1
m

m∑
i=1

qi
rq
wq + ri

rr
wr + ei

re
we

wq + wr + we

5.2.1 Handling of Infeasible Solutions

There are cases when parameter values are set in such a way that the algo-
rithm cannot run. Some parameters in HL are constrained so that setting the
wrong values is impossible. However not all of these cases can be verified before
actually executing the algorithm. For example, there is currently no method
in HL that verifies that the population size has to be larger than the number
of elites. In evolutionary computing there are different approaches on how to
handle infeasible solutions as discussed in [44]:

• Preserving Feasibility: The transformation operators of the algorithm
guarantee to create only feasible solutions. However due to the limitations
of parameter validation in HL this method is not applicable.

• Repairing Infeasible Solutions: This approach allows the creation of
infeasible solutions, but it guarantees that each individual is repaired by a
repair function before being evaluated. Implementing such a repair func-
tion for HL would be tricky. The best way to do it would be to manipulate
parameters and try to evaluate until no exception is thrown by the algo-
rithm.

• Penalty Function:When a penalty function is used operators are allowed
to produce infeasible solutions. These solutions are penalized when they
are evaluated. The penalty value may be dependent on how infeasible a
solution is or it may be fixed.

• Repeating: If the operators are stochastic, the manipulation of a solution
could be repeated until it is feasible.

In PMO for HL the penalty function approach has been chosen. The penalty
value is defined by the worst quality value from the first generation.

5.3 Operators

Algorithms in HL are very abstracted from the optimization problem and the
problem encoding. However, some algorithm operation need to manipulate solu-
tion candidates and therefore they need to be implemented specifically for each
encoding. Among these encoding-specific operators are operators that create
solutions, crossover-, and mutation-operators for population-based algorithms
as well as move-operators for trajectory base algorithms. For this thesis, only

5. Implementation 42

operators for population-based evolutionary algorithms have been implemented.
In the following sections these operators are described.

5.3.1 Solution Creator

The solution creator is responsible for creating a random solution candidate.
This operator is mainly used to initialize an initial generation of randomized
individuals. The solution creator for PMO needs one initial parameter configu-
ration tree which can be generated from a given algorithm and a problem (as
described in Section 5.1.2). A user can configure the tree by enabling optimiza-
tion for certain parameters and by adapting search ranges and possible values.
To create one random solution candidate the initial parameter configuration tree
is cloned. Then the cloned parameter configuration tree is traversed. For each
optimizable element the method Randomize() is called. Depending on the type
of element, different actions are performed:

• ParameterConfiguration: The Randomize() method is called on all
child value configuration elements. A new actual value is selected ran-
domly from the list of available value configurations.

• ParameterizedValueConfiguration: The Randomize()method is called
on all child parameter configuration elements.

• RangeValueConfiguration: A new uniformly distributed random value
is sampled out of the specified range.

5.3.2 Evaluator

The evaluation operator applies the fitness function on a solution candidate
in order to compute its quality. In the case of PMO, the base-level algorithm
needs to be parameterized and executed n times for each base-level problem.
The PMOEvaluator therefore creates an instance of the base-level algorithm
for each repetition and for each base-level problem. Then all these instances are
parameterized with the current parameter values of the parameter configuration
tree. The base-level algorithm instances are configured with the corresponding
base-level problems. Then each of the base-level algorithm instances is executed
(sequential, parallel, or distributed depending on the selected execution engine).
After all runs have finished, the results of each run are collected. For each base-
level problem the average quality, the standard deviation of the qualities, and
the average number of evaluated solutions is computed. The last step in the
evaluation is the normalization of these values. As described in Section 5.2 the
qualities of the different base-level problems need to be divided by the reference
value for each base-level problem. The average of the normalized fitness measures
represents the final quality value for one solution candidate.

The evaluation of solution candidates is the computationally most intense
part of meta-optimization. Fortunately, the solution evaluations are independent
from each other, which makes parallelization a viable option. In HL, parallel

5. Implementation 43

evaluation of solution candidates is possible either locally with multiple threads
or distributed using HL Hive (see Section 3.2). For this thesis, HeuristicLab
Hive was used excessively to overcome the massive runtime requirements. The
used resources are split up into high performance computing infrastructure and
regular desktop computers. Up to 120 CPU cores were used to compute the
experiments shown in Chapter 6.

5.3.3 Mutation

The mutation operation in evolutionary algorithms is supposed to manipulate
one solution candidate. It is applied with a certain probability (MutationProb-
ability). To manipulate a parameter configuration tree, the elements of the tree
need to be selected. The selected elements need to be manipulated in different
ways, depending on their data types. The following operators were implemented
for selecting the nodes of the tree that should be manipulated:

• ParameterConfigurationOnePositionManipulator: Randomly cho-
oses one parameter out of the parameter configuration tree which is se-
lected to be optimized. On this parameter a type-specific manipulation
operator is applied.

• ParameterConfigurationAllPositionsManipulator: Applies the type-
specific manipulation operators to all parameters of the parameter config-
uration tree which are selected to be optimized.

After the elements nodes that should be mutated are selected, type-specific
manipulation operators are applied on each of them:

Mutation of Parameter Configurations

When a parameter configuration is mutated, a new current value is selected
randomly from the list of available value configurations. The probability for
each value to be selected is the same.

Mutation of Boolean Values

Since boolean values can only have two different values (true, false), one of these
values is randomly chosen by the mutation operator.

Mutation of Integer Values

• UniformIntValueManipulator: Sets the parameter value to a new ran-
dom value that is sampled from the specified range.

• NormalIntValueManipulator: Sets the parameter value to a new ran-
dom value that is sampled from a normal distribution N (µ, σ) where the
mean µ is the current value and the variance σ is 10% of the size of the

5. Implementation 44

specified range. If the newly sampled value happens to lie outside of the
range, it is re-sampled until it lies within the range.

Mutation of Double Values

• UniformDoubleValueManipulator: Apart from generating a double
value, this mutation operator works exactly like the UniformIntValueMa-
nipulator described earlier.

• NormalDoubleValueManipulator: Apart from generating a double va-
lue, this mutation operator works exactly like the NormalIntValueManip-
ulator described earlier.

5.3.4 Crossover

The crossover (or recombination) operation is supposed to combine the genes of
two solution candidates to create a new one. The two parent solution candidates
are selected by the selection operator of the meta-level algorithm. For PMO
this means to combine two parameter configuration trees. To do so, one of the
parameter configuration trees is cloned. Then the newly created offspring is
traversed along with the second parent. Each IOptimizable node is then crossed
with the corresponding node of the second tree. The concrete crossover operation
is dependent on the data type of the node:

Crossover of Parameter Configurations

When two parameter configurations are crossed, the index of the currently se-
lected value configuration is chosen from one of the parents randomly.

Crossover of Boolean Values

The boolean value of either of the two parent solution candidates is chosen
randomly.

Crossover of Integer Values

• DiscreteIntValueCrossover: The value of one of the parents is chosen
randomly.

• AverageIntValueCrossover: The average of the values of the parents is
computed.

• NormalIntValueCrossover: A new value is sampled from a normal dis-
tribution N (µ, σ) where the mean µ is the value of the better parent and
the variance σ is the absolute difference of the values of the parents. If
the newly sampled value lies outside of the range, it is re-sampled until it
lies within the range. This operator strongly emphasizes the better parent

5. Implementation 45

solution candidate and correlates the strength of manipulation with the
difference of the parents.

Crossover of Double Values

• DiscreteDoubleValueCrossover: Apart from generating a double value,
this crossover operator works exactly like the DiscreteIntValueCrossover
described earlier.

• AverageDoubleValueCrossover: Apart from generating a double value,
this crossover operator works exactly like the AverageIntValueCrossover
described earlier.

• NormalDoubleValueCrossover: Apart from generating a double value,
this crossover operator works exactly like the NormalIntValueCrossover
described earlier.

5.4 Analysis

In HL, each problem implementation can provide analyzers for an algorithm.
Analyzers are executed after each iteration of an algorithm. They can create
result values which are displayed in the graphical user interface. The analyzers
which were implemented for PMO are described in the following sections.

5.4.1 Population Analyzer

This analyzer adds the individuals of the current population to the results col-
lection. It enables a user to inspect the properties of all solution candidates
of the population during runtime. Figure 5.8 shows a list of individuals of a
population.

5.4.2 Best Solution History Analyzer

Every time a new best solution candidate is found, it is inserted into a list of
best solution candidates. This list is inserted into the results collection along
with the generations in which they were produced. This list makes it possible to
analyze how the best solution evolved over the course of multiple generations.

5.4.3 Population Diversity Analyzer

The population diversity analyzer computes the similarity between each pair
of solution candidates of the current population. The similarity between two
solution candidates is defined as follows:

• ParameterConfiguration: The average similarity value of all selected
value configurations.

5. Implementation 46

Figure 5.8: The population analyzer shows a list of individuals of the current
population of a meta-optimization run. Detailed information about the fitness
and the parameter values of each individual are available.

• ParameterizedValueConfiguration: The average similarity of all pa-
rameter configurations.

• RangeValueConfiguration: The similarity (S) of two numeric value
configurations (c1, c2) which have a range with a lower bound (α) and
an upper bound (β) is defined as follows:

S(c1, c2) = max(0, d(c1 − c2)
β − α

)

d is a parameter which affects how similar two values are in relation to the
range. In the experiments for this thesis d was set to two, which means
that two values have a similarity of zero if their difference is the same or
larger than half of the range size.

The result is a similarity matrix with values ranging from zero to one. Fig-
ure 5.9 shows such a similarity matrix as a heat map. The similarity matrix
can be stored for each generation, which allows analyzing the diversity of the
population over time.

5.4.4 Solution Cache Analyzer

This analyzer keeps a history of previously evaluated solutions. Its purpose is to
avoid the evaluation of solutions which have already been evaluated. Because the
solution evaluation might be executed in a distributed environment, the solution
cache has to be filled after the whole population was evaluated. This is done by

5. Implementation 47

Figure 5.9: The image on the left shows the diversity of a population of 30
solution candidates in an early stage of the optimization process. The red diagonal
indicates that every individual has a similarity of one to itself while the similarity
to the other solutions is quite low. The image on the right shows the population
diversity in a later stage of the optimization process. Some groups of individuals
are very similar to each other, indicated by red color.

the solution cache analyzer. Furthermore, the solution cache analyzer allows
running statistical analysis of all solution evaluations that occurred during the
optimization process. However, due to the high memory demand of storing all
solution results, the analyzer can be configured to store only the solutions of the
previous generation.

5.4.5 Exhaustive Search

This thesis focuses on the automatic optimization of parameters for heuristic op-
timization algorithms by using a meta-optimization approach. However, in some
scenarios it might as well be interesting to explore the whole search space. Of
course, this is only possible if a small amount of parameters and narrow search
ranges are explored. For this requirement an enumerator (ParameterCombina-
tionsEnumerator) which implements the interface IEnumerator<IOptmizable>
was created. This special enumerator is able to enumerate all possible combina-
tions of parameter values of a parameter configuration tree. It is initialized with
an IOptimizable object. Depending on the type of the object, the enumerator
initializes a list of child-enumerators:

• ParameterConfiguration: A ParameterCombinationsEnumerator is cre-
ated for each value configuration which is selected to be optimized.

• RangeValueConfiguration: The range offers the method GetCombina-
tions() which returns the list of values from that range. It starts with the
lower bound value and adds the step size until it reaches the upper bound
value. An enumerator of this list is added to the child-enumerators.

• ParameterizedValueConfiguration: A ParameterCombinationsEnumer-
ator is created for each parameter configuration.

5. Implementation 48

1 var alg = new GeneticAlgorithm();
2 var problem = new TravelingSalesmanProblem();
3 var config = new ParameterConfigurationTree(alg, problem);
4
5 // configure search ranges
6 Configure(config);
7
8 // iterate over all possible parameter combinations
9 var experiment = new Experiment();

10 foreach (ParameterConfigurationTree curConfig in config) {
11 var curAlg = new GeneticAlgorithm();
12 curConfig.Parameterize(curAlg);
13 experiment.Optimizers.Add(curAlg);
14 }
15
16 // run the created algorithms
17 experiment.Start();

Program 5.1: This code shows how easy it is to iterate over all possible param-
eter combinations of a parameter configuration tree.

Having added the child-enumerators, each enumerator is moved to the first
element. In this state, all parameter values with ranges have their values set to
the lower bound value and all parameter configurations have the first value con-
figuration as actual value. In the MoveNext() method the first child-enumerator
is moved to the next element and the actual value of the IOptimizable is updated.
Subsequent calls of MoveNext() do move the first enumerator forward until it
reaches the last element. When this happens, the second child-enumerator is
moved forward and the first enumerator is reset to the first element. When
the second child-enumerator reached the last element, the next enumerator is
moved forward and the first and second are reset. This process continues until
all child-enumerators have reached the last element.

Doing an exhaustive search is as easy as iterating over all combinations
by using the ParameterCombinationsEnumerator and parameterizing a new al-
gorithm instance in every iteration which is shown in Program 5.1. Since the
iterated parameter configuration tree is modified and not cloned in every itera-
tion, it is very fast and can iterate hundreds of thousands of combination in few
seconds. Figure 6.8 shows the results of such an exhaustive search.

Chapter 6

Experimental Results

One of the goals of this thesis is to find the optimal parameterization for some
optimization algorithms and problems in order to test and validate the imple-
mentation presented in Chapter 5. Several different optimization scenarios have
been selected. They are described in the following sections.

6.1 Scenario 1: Varying Problem Dimensions, Short
Runtime

In this scenario (S1) the parameters of a GA (see Section 2.1.2) are optimized.
Multiple different Griewank test-functions (see Section 2.1.3) are used as base-
level problems. As a meta-level optimizer, a GA is applied. The goal of this
scenario is to find out how the optimal parameter values differ when different
problem dimensions of test-functions are used. The base-level algorithm is con-
figured in such a way that the runtime is kept quite short (in contrast to S2
where runtime is longer). The following sections describe the parameters that
will be used for each level as well as the different base-level problem sets which
are used.

6.1.1 Meta-Level Algorithm

The parameters of the meta-level GA are shown in Table 6.1. These settings were
tuned manually. The rather small population size and maximum generations
are related to the immense runtime requirements. A repetition-count of six has
been chosen as a trade-off between high runtime demand and high evaluation
accuracy. The average quality is used as the only optimization objective in this
scenario, because weighted fitness evaluation has not yet been implemented at
the time of these experiments.

49

6. Experimental Results 50

Parameter Name Value
Algorithm GA
Maximum generations 100
Population size 30
Mutation probability 10%
Elites 1
Selection operator Proportional
Mutation operator OnePositionsManipulator
Mutation operator (IntValue) NormalIntValueManipulator
Mutation operator (DoubleValue) NormalDoubleValueManipulator
Crossover operator (IntValue) NormalIntValueCrossover
Crossover operator (DoubleValue) NormalIntValueCrossover
Evaluation repetitions 6
Quality weight 1.0
Robustness weight 0.0
Effort weight 0.0

Table 6.1: Parameters of the meta-level algorithm (m1) for S1

6.1.2 Base-Level Algorithm

The parameter configuration (c1) of the base-level GA is shown in Table 6.2.
The population size and the number of maximum generations are fixed for this
scenario in order to keep the runtime approximately equal for all solution can-
didates (100’000 solution evaluations, 1–2 minutes runtime). When ranges are
specified, the number after the colon represents the step size. For some param-
eters, such as the iteration dependency or the maximum manipulation, a set of
concrete values has been chosen instead of ranges to reduce the search space and
simplify the problem. An exhaustive search in the space of all possible param-
eter values would be rather impossible. Due to the curse of dimensionality [8]
the number of possible combinations increases dramatically as parameters are
added to be optimized. The number of possible parameter value combinations
for c1 is more than 29 billion. Assuming an average base-level algorithm runtime
of 90 seconds, it would take 30 million years to do an exhaustive exploration of
the search space.

6.1.3 Base-Level Problems

The following base-level problems were used in this scenario:
• f1: griewank(500)
• f2: griewank(1′000)
• f3: griewank(1′500)
• f4: griewank(2′000)
The Griewank test-function is a minimization problem which has an optimal

value of 0.0 (see Section 2.1.3 for more details).

6. Experimental Results 51

Parameter Name Values
Algorithm GA
Maximum generations 1’000
Population size 100
Mutation probability 0%–100%:1%
Elites 0–100:1
Selection operator LinearRank, Proportional, Random, Tournament (Group size:

2–100:1), GenderSpecific (Female selector: Proportional, Male
selector: Random), BestSelector, WorstSelector

Mutation operator Breeder, MichalewiczNonUniformAllPositions (Iteration
dependency: 2, 5, 10), MichalewiczNonUniformOnePosition

(Iteration dependency: 2, 5, 10),
SelfAdaptiveNormalAllPositions (Strategy parameter: 1, 12),

PolynomialAllPosition (Contiguity: 2, Maximum manipulation:
1, 12, 120), PolynomialOnePosition (Contiguity: 2, Maximum

manipulation: 1, 12, 120), UniformOnePosition, null (no
mutation)

Crossover operator Average, BlendAlphaBeta (Alpha: 0.75, Beta: 0.25),
BlendAlpha (Alpha: 0.5), Discrete, Heuristic, Local,

RandomConvex, SimulatedBinary (Contiguity: 2), SinglePoint,
UniformAllPositionsArithmetic (Alpha: 0.33),

UniformSomePositionsArithmetic (Alpha: 0.5, Probability: 0.5)

Table 6.2: Parameter configuration (c1) of the base-level algorithm for S1

6.1.4 Results and Discussion

One meta-optimization run was performed for each base-level problem f1–f4 as
well as for the problem set {f1f2f3f4}. The parameter configuration c1 defined
in Table 6.2 was used. Table 6.3 shows the best parameter values (p) found in
each run. All runs were executed at the same time using HeuristicLab Hive and
finished within 3 days.

Interestingly the solutions p(c1, f2), p(c1, f3), p(c1, f4), and p(c1, f5) seem
to be very similar. Since Best- and WorstSelector behave almost the same, the
only significant outlier is the mutation probability value of 46% in p(c1, f3). In
this case, the optimization process could have done further improvement as the
quality value is worse than the quality for p(c1, f4).

To validate if each parameterization is really optimal for the problem set
it has been optimized for, cross-testing was performed for all results. In these
cross-tests, each parameterization was applied to a different base-level problem.
Figure 6.1 shows that p(c1, f1) performs significantly better on f1 (as expected)
than on the other problems, while p(c1, f2) to p(c1, f5) perform almost equally
well on f2 to f5, but not so well on f1.

To validate the outcome of the meta-optimization runs, one-dimensional ex-
plorations of the search space were performed for some parameter values of
p(c1, f1). To do this kind of exploration, one parameter value is varied while all

6. Experimental Results 52

p(c1, f1) p(c1, f2) p(c1, f3) p(c1, f4) p(c1, {f1f2f3f4})
Elites 1 1 1 1 1
Crossover operator BlendAlpha Average Average Average Average
Mutation operator SelfAdaptive-

NormalAllPos
Michalewicz-
NonUniform-

AllPos

Michalewicz-
NonUniform-

AllPos

Michalewicz-
NonUniform-

AllPos

Michalewicz-
NonUniform-

AllPos
Iteration dependency 10 2 2 10
Mutation probability 27% 30% 46% 25% 25%
Selection operator Tournament WorstSelector BestSelector BestSelector WorstSelector
Tournament group size 5
Generations 100 100 100 100 100
CPU time (days) 23 9.9 19.6 21.6 86
Average qualities f1: 1.3952 f2: 12.5546 f3: 25.3463 f4: 20.18 f1: 5.86

f2: 11.79
f3: 17.51
f4: 23.58

Table 6.3: Solutions of the meta-optimization runs for S1

1,43

6,40

8,62

5,54 5,91

0

2

4

6

8

10

p(c1, f1) p(c1, f2) p(c1, f3) p(c1, f4) p(c1, {f1,
f2, f3, f4})

f1 51,54

12,47
16,88

11,00 11,91

0

10

20

30

40

50

60

p(c1, f1) p(c1, f2) p(c1, f3) p(c1, f4) p(c1, {f1,
f2, f3, f4})

f2

18,39
25,90

16,02 17,28

0

20

40

60

80

100

p(c1, f1) p(c1, f2) p(c1, f3) p(c1, f4) p(c1, {f1,
f2, f3, f4})

f3

24,50
34,14

20,13 22,98

0

20

40

60

80

100

p(c1, f1) p(c1, f2) p(c1, f3) p(c1, f4) p(c1, {f1,
f2, f3, f4})

f4
2262,53 629,11

Figure 6.1: Average qualities achieved by different parameterizations for the
problems f1 to f4. Each parameterization (p) was repeated 10 times on each
base-level problem.

other parameter values are fixed. These experiments do not prove that p(c1, f1)
represents the optimal parameterization (global optimum), but they provide
some insight into the meta-fitness-landscape in a single dimension and if the
best value in that dimension was found (local optimum).

Figure 6.2 shows the exploration of the Elites parameter. Each dot in the
chart shows the best quality of the execution of the base-level algorithm (genetic

6. Experimental Results 53

Figure 6.2: One-dimensional exploration of
the meta-fitness-landscape for the Elites pa-
rameter of p(c1, f1). Each dot represents a run.
10 repetitions were performed for each value.

Figure 6.3: One-dimensional exploration of
the meta-fitness-landscape for the Mutation-
Probabilty parameter of p(c1, f1). Each dot
represents a run. 10 repetitions were per-
formed for each value.

algorithm) parameterized with p(c1, f1), only the Elites parameter was varied
with values from 0–50. Obviously the best value seems to be 1 as suggested
by p(c1, f1). In a similar way the GroupSize parameter was tested in the range
of 2–50. The best value according to p(c1, f1) is 5. Figure 6.4 shows that 5 is
indeed the optimal value, assuming all other parameter values fixed. Both the
Elites and the GroupSize parameters have a clear optimum in contrary to the
MutationProbability parameter. Figure 6.3 shows that any value for the Mu-
tationProbabilty between 20% and 50% yields approximately the same quality.
The value of 27% which was identified by p(c1, f1) lies in the middle of this
range.

The results presented in this scenario clearly show that the choice of param-
eter values is significantly influenced by the dimension of the problem. A good
parameterization for a problem is not necessarily good on another problem, even
if only the dimension is varied.

6.2 Scenario 2: Varying Problem Dimensions, Long
Runtime

In this scenario (S2) the optimization scenario S1 is repeated with the same
algorithms and parameters, only the maximum number of generations of the
base-level algorithm is increased to 10’000 (resulting in 1’000’000 solution eval-

6. Experimental Results 54

Figure 6.4: One-dimensional exploration of the meta-fitness-landscape for the
GroupSize parameter of p(c1, f1). Each dot represents a run. 10 repetitions were
performed for each value. Both charts show the same runs, only the right one is
zoomed to make the best value of 5 visible.

uations). This parameter configuration will be referred to as c2. That change
resembles a more realistic scenario, with an average base-level algorithm runtime
of around 10 minutes.

6.2.1 Results and Discussion

Just as in S1 one meta-optimization run was performed for each problem f1–f4
(as defined in Section 6.1.3) and one run was performed for multiple problems
{f1f2f3f4}. Table 6.4 shows the results of each run. All runs were performed at
the same time using HeuristicLab Hive. p(c2, f1) finished after 9 days, p(c2, f2)
after 26 days and p(c2, f3)–p(c2, f5) were stopped after 33 days of execution due
to limited time and computational resources.

The BlendAlphaCrossover was identified as the best crossover operator and
the BreederGeneticAlgorithmManipulator as the best mutation operator for all
problem sets. Remarkably, the Elites parameter seems to be negatively corre-
lated to the problem dimension. A significant difference between p(c2, f1) and
the other results is the LinearRankSelector and the lower MutationProbability.
To analyze the results each parameterization was tested against each problem
set in the form of cross-tests (Figure 6.5). The cross-tests show that p(c2, f1) and
p(c2, f4) perform best on the problem set they have been optimized for. p(c2, f2)
and p(c2, f3) perform well but not best on the problem sets they have been op-
timized for. p(c2, f5), which is supposed to work well on all problems, performs

6. Experimental Results 55

p(c2, f1) p(c2, f2) p(c2, f3) p(c2, f4) p(c2, {f1f2f3f4})
Elites 10 7 1 0 8
Crossover operator BlendAlpha BlendAlpha BlendAlpha BlendAlpha BlendAlpha
Mutation operator Breeder Breeder Breeder Breeder Breeder
Mutation probability 24% 68% 57% 80% 75%
Selection operator LinearRank Tournament Tournament Tournament Tournament
Tournament group size 5 5 10 3
Generations 100 100 79 66 25
CPU time (days) 66.7 147.7 197.2 228.2 329.9
Average qualities f1: 6.6×10−10 f2: 1.0×10−6 f3: 5.0×10−5 f4: 0.02 f1: 4.6×10−6,

f2: 0.0038,
f3: 0.0054,
f4: 0.09548

Table 6.4: Solutions of the meta-optimization runs for S2. Note that PMO for
f3, f4, and f5 has been stopped before reaching 100 generations due to time
constraints.

9,70E-10

6,37E-09

1,57E-09

0

2E-09

4E-09

6E-09

8E-09

1E-08

p(c2, f1) p(c2, f2) p(c2, f3) p(c2, f4) p(c2, {f1,
f2, f3, f4})

f1

1,15E-06

6,22E-07

1,59E-06

0,E+00

5,E-07

1,E-06

2,E-06

2,E-06

3,E-06

3,E-06

p(c2, f1) p(c2, f2) p(c2, f3) p(c2, f4) p(c2, {f1,
f2, f3, f4})

f2

1,12E-04

5,45E-05

2,50E-05

0,E+00

5,E-05

1,E-04

2,E-04

2,E-04

p(c2, f1) p(c2, f2) p(c2, f3) p(c2, f4) p(c2, {f1,
f2, f3, f4})

f3

5,46E-03

3,62E-03

7,17E-04

0,E+00

2,E-03

4,E-03

6,E-03

8,E-03

1,E-02

p(c2, f1) p(c2, f2) p(c2, f3) p(c2, f4) p(c2, {f1,
f2, f3, f4})

f4

3,77E-7 4,43E-6 1,86E-4

0,33 0,0058 3,36 0,097

Figure 6.5: Average qualities achieved by different parameterizations for the
problems f1 to f4. Each parameterization p was repeated 10 times on each base-
level problem.

not very good which might be caused by stopping it after only 25 generations.
The results in this scenario clearly show that problems in different dimen-

sions require different parameterizations. The resulting parameters may also be
surprising for some researchers, because they differ significantly from the default
suggestions. The Elites parameter for instance is usually set to one, but the re-
sults show (except for p(c2, f3)) that this setting is not always the best – at least
in combination with the other values found here.

6. Experimental Results 56

Problem Generations Average quality
optimized for optimized for

1’000 generations 10’000 generations
f1 1’000 1.4275 32.5088
f2 1’000 12.4656 233.6063
f3 1’000 25.8992 1840.8791
f4 1’000 20.1268 5720.0282
f1 10’000 0.6300 9.7025×10−10

f2 10’000 2.2378 1.1464×10−6

f3 10’000 4.4841 5.4466×10−5

f4 10’000 3.1242 7.1727×10−4

Table 6.5: Shows the qualities (average of 10 runs) of a multiple GA runs with
different settings for a different number of generations.

6.3 Scenario 3: Varying Generations

In this scenario (S3) the effects of the number of generations is analyzed for GAs.
In order to do so, the results from S1 and S2 are compared. In both scenarios, the
parameters of a GA are optimized to solve the Griewank test-function problem
in different dimensions. In S1 the base-level GA runs for 1’000 generations,
while in S2 it is configured to run for 10’000 generations. The results of these
optimizations have been shown in Table 6.3 and 6.4 in the previous sections.

To validate these results, the settings were cross-tested. The results of these
cross-tests are shown in Table 6.5. It is evident that the parameter values from
S1 clearly outperform the parameter values of S2 for 1’000 generations at every
problem. The opposite is the case for 10’000 generations. For further analysis, the
quality charts for f1 and 10’000 generations is shown with the settings from S1
(Figure 6.6) and S2 (Figure 6.7). In Figure 6.6 the quality improves significantly
until generation 1’000, but then it stagnates and does not improve anymore. In
contrast, the quality chart in Figure 6.7 shows slower convergence, but it does
not suffer from stagnation at all. The quality improves in almost every iteration
until the last generation.

6.4 Scenario 4: Varying Problem Instances

In scenario 4 (S4) the parameters of a GA for different instances of the TSP
(see Section 2.1.3) are optimized. Two different algorithms are used on the meta-
level. The goal is to see how the optimal parameter values differ for different
TSP instances and also how the two different meta-level algorithms perform in
comparison.

6. Experimental Results 57

Figure 6.6: Shows the quality history of a
GA run for f1 over 10’000 generations. The
settings that were used in this run were opti-
mized for 1’000 generations.

Figure 6.7: Shows the quality history of a
GA run for f1 over 10’000 generations. The
settings that were used in this run were opti-
mized for 10’000 generations.

6.4.1 Meta-Level Algorithm

On the meta-level, a normal GA and an offspring selection genetic algorithm
(OSGA) are used. The configuration of both meta-level algorithms is shown in
Table 6.6. As described in Section 2.1.2 OSGAs compare the quality of a new
offspring to the quality of the parent individuals. It is then decided if the new
offspring may pass into the new generation. In m3 a lower- and upper bound of
1.0 is used for the comparison factor, which results in a strict offspring selection.
That means that only offspring which are better than both parents may survive.
A success ratio of 1.0 means that 100% of the new generation have to fulfill that
criterion. Since the evaluation of a solution candidate for PMO takes a long time,
it would be inefficient to evaluate new offspring one after the other. Instead, a
number of offspring is created and evaluated at once. This evaluation can then
be parallelized. In m3 the number of offspring created at once is 60.

Other than in S1 and S2, the robustness and the effort are also included
in the fitness function. However, their weights are chosen very low, since the
main objective should still be the best quality. The meta-optimization algorithm
should not primarily optimize for a low number of evaluated solutions (effort)
or a low standard deviation (robustness). Instead, the goal should be to find a
solution candidate with good quality, but if there are several candidates with
similar quality, the one with a better robustness and lower effort should be
ranked better.

6.4.2 Base-Level Algorithm

Table 6.7 describes the parameter configuration of the GA which should be
optimized. The configuration is similar to the one used in S1, only that the sets

6. Experimental Results 58

Parameter Name m2 m3

Algorithm GA OSGA
Maximum generations 100 100
Population size 30 30
Mutation probability 15% 15%
Elites 1 1
Selection operator Proportional Proportional
Mutation operator OnePosition OnePosition
Mutation operator (IntValue) Normal Normal
Mutation operator (DoubleValue) Normal Normal
Crossover operator (IntValue) Normal Normal
Crossover operator (DoubleValue) Normal Normal
Comparison factor LB 1.0
Comparison factor UB 1.0
Success ratio 1.0
Evaluation repetitions 6 6
Quality weight 1.0 1.0
Robustness weight 0.01 0.01
Effort weight 0.0005 0.0005

Table 6.6: Parameters of the meta-level algorithms for S4

of operators for crossover and mutation are different. The reason for this is that
the TSP has a different solution encoding than test-functions and mutation as
well as crossover operators are encoding-specific. The population size and the
maximum generations are fixed to avoid individuals with very different runtime.
The maximum number of generations is 10’000, which results in an approximate
runtime of 1–3 minutes for f5 and 1–4 minutes for f6.

6.4.3 Base-Level Problems

The TSPs which were used as base-level problems in this scenario are benchmark
problems taken from the TSPLIB1:

• f5: ch130 (cities: 130, best quality: 6110)
• f6: kroa200 (cities: 200, best quality: 29368)

6.4.4 Results and Discussion

The parameters of the base-level algorithm are optimized for each base-level
problem with a GA (m2) and an OSGA (m3) resulting in four meta-optimization
runs. The results of these runs are presented in Table 6.8. While the GA runs
calculated 100 generations, the OSGAs both stopped after 5 generations be-
cause the selection pressure reached the limit of 30. The OSGA runs required
approximately the same number of evaluated solutions as the GA runs.

1http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95

6. Experimental Results 59

Parameter Name Values
Algorithm GA
Maximum generations 10’000
Population size 100
Mutation probability 0%–100%:1%
Elites 0–100:1
Selection operator LinearRank, Proportional, Random, Tournament (Group size:

2–100:1), GenderSpecific (Female selector: Proportional, Male
selector: Random), GeneralizedRank (Pressure: 2),

NoSameMates (Selector: Tournament (Group size: 2),
Difference: 5%), BestSelector, WorstSelector

Mutation operator Insertion, Inversion, Scramble, Swap2, Swap3,
TranslocationInversion, Translocation, null (no mutation)

Crossover operator Cosa, CyclicCrossover2 (CX2), EdgeRecombination (ERX),
MaximalPreservation (MPX), OrderBased (OX), Order2
(OX2), PartiallyMatched (PMX), PositionBased (PBX),

UniformLike (ULX)

Table 6.7: Parameter configuration (c3) of the base-level algorithm for S4

p(c4, f5, m2) p(c4, f5, m3) p(c4, f6, m2) p(c4, f6, m3)
Elites 8 0 15 18
Crossover operator ERX ERX OX2 OX2
Mutation operator Translocation-

Inversion
Inversion Inversion Inversion

Mutation probability 88% 92% 52% 33%
Selection operator Tournament Tournament NoSameMates GeneralizedRank
Tournament group size 11 14
Generations 100 5 100 5
Termination Generations Sel. pressure Generations Sel. pressure
Evaluated solutions 3000 3330 3000 2460
CPU time (days) 17.3 32.1 25.7 23.7
Average quality f5: 6360.16 f5: 6303.33 f6: 31613.5 f6: 31648.5
Diff. to best known f5: 250,16 f5: 193,33 f6: 2245,5 f6: 2280,5
Standard deviation f5: 72.62 f5: 42.76 f6: 389.08 f6: 627.49
Evaluated solutions f5: 920100 f5: 1000100 f6: 850100 f6: 820100

Table 6.8: Solutions of the meta-optimization runs for S4

The results show that the ERX seems to be a better crossover operator for
f5 whereas the OX2 works better for f6. The Inversion operator which inverts a
random part of a permutation seems to be a good fit for all problem instances.
The TranslocationInversion operator which was selected in p(c3, f5,m2) is sim-
ilar to the Inversion operator only that it also shifts the inverted part of the
permutation to another position. Due to the extremely high mutation probabil-
ities chosen in p(c3, f5,m2) and p(c3, f5,m3) the mutation operator has a large
impact on the algorithm. Combined with the large number of elites and a large

6. Experimental Results 60

group size of the tournament selection, the probability of being selected is ex-
tremely high for the best individuals and almost zero for the worst. In fact, the
algorithm almost turns into a local search algorithm (see Section 2.1.1).

Obviously the parameters for f6 seem to require a lower mutation probability.
The crossover operator is more relevant in the search process, so it is interesting
to see that the OX2 is favored. Instead of the tournament selection operator
of p(c3, f5,m2) and p(c3, f5,m3), the NoSameMates and the GeneralizedRank
selection operators are chosen. Interestingly, the selection operators are quite
different in these two solutions, yet the resulting average quality seems to be
very similar. It is remarkable that the standard deviation of p(c3, f6,m3) is
much higher than the one of p(c3, f6,m2) which may be related to the different
selection operator. Compared to the results for f5 the number of elites is much
higher in the results for f6. This may also be related to the fact that p(c3, f5,m2)
and p(c3, f5,m3) already employ a tournament selector with a large group size
which also increases the probability of the top individuals to be selected.

p(c3, f5,m3) is kind of an outlier regarding the Elites parameter value of
zero. To analyze if this result is feasible, a two-dimensional exploration of the
parameters Elites and GroupSize was performed. The base-level algorithm was
parameterized with the results from p(c3, f5,m3). The parameters Elites and
GroupSize were varied in the ranges 0–30 and 2–30 resulting in 899 different
combinations. Each combination was executed 10 times using HeuristicLab Hive.
The results of this grid search are shown in Figure 6.8. The total runtime of
that experiment was 13.57 days. The plot shows extremely bad quality values
for very low values of Elites and GroupSize. The best quality values can indeed
be achieved with zero elites and a tournament group size of 14.

 0
 5

 10
 15

 20
 25

 30

 5
 10

 15
 20

 25
 30

 200

 300

 400

 500

 600

 700

 800

 500
 400
 300

Elites

GroupSize

 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 0 5 10 15 20 25 30

Elites

 0

 5

 10

 15

 20

 25

 30

G
ro

up
S

iz
e

 200

 300

 400

 500

 600

 700

 800

Figure 6.8: Exploration of the parameters Elites and GroupSize of p(c3, f5,m3).
The Elites parameter is varied in the range of 0–30, the GroupSize parameter in
the range of 2–30. The z-axis shows the average difference to the best known
quality of 10 repetitions for each combination.

6. Experimental Results 61

The results in this scenario show that high mutation probabilities along with
a high number of elites and tournament group size can achieve very good results.
However, it was not possible to tune the parameters in such a way that they
find the global optimum of both TSPs and also the results should be taken with
a grain of salt, since the standard deviations shown in Table 6.8 are very high.
This means that the meta-level fitness landscape is very noisy and there may
be many parameter values which yield similar qualities.

6.5 Scenario 5: Symbolic Expression Grammar for
Regression

One way to affect the performance of symbolic regression is to change which
symbols are allowed for building expression trees. As described in Section 5.1.4,
these symbols are defined in the symbolic expression grammar. In this scenario
(S5) some properties of the grammar are optimized for a symbolic regression
problem.

6.5.1 Meta-Level Algorithm

As meta-level optimizers, GAs with different parameterizations are used. Ta-
ble 6.9 shows the different configurations. In m4 a Normal crossover is used,
whereas the DiscreteCrossover is used for the others. Additionally the amount
of mutation is increased for m5 by using the AllPositions mutator for the config-
urations that use the DiscreteCrossover. In m6 and m7 a Tournament selector
with a group size of three and five is used.

6.5.2 Base-Level Algorithm

A GA is used as the base-level algorithm. Table 6.10 shows the parameters of
the algorithm as well as the settings for the symbolic expression grammar. The
symbols that are enabled have an initial frequency of one by default. Beside the
Variable and Constant symbol there are arithmetic symbols enabled. The initial
frequencies of the Logarithm, Root and Power symbols are being optimized in
the range of zero to five. The goal is to find out if these operators, which can
describe non-linear correlations, should be weighted more or less than the other
symbols to find good solutions. As for the Constant and Variable symbol the
goal is to find out how strong the manipulation operations should be on them
when they are mutated. Therefore, their sigma properties (see Section 5.1.4) are
optimized. The approximate runtime of the base-level algorithm is 2–3 minutes.

6.5.3 Base-Level Problem

The base-level problem (f7) is a real world benchmark data set which comes
from an industrial problem on modeling gas chromatography measurements of

6. Experimental Results 62

Parameter Name m4 m5 m6 m7

Algorithm GA GA GA GA
Maximum generations 100 100 100 100
Population size 30 30 30 30
Mutation probability 15% 15% 15% 15%
Elites 1 1 1 0
Selection operator Proportional Proportional Tournament Tournament
Tournament group size 3 5
Mutation operator OnePosition AllPosition AllPosition AllPosition
Mutation operator (IntValue) Normal Normal Normal Normal
Mutation operator (DoubleValue) Normal Normal Normal Normal
Crossover operator (IntValue) Normal Discrete Discrete Discrete
Crossover operator (DoubleValue) Normal Discrete Discrete Discrete
Evaluation repetitions 6 6 6 10
Quality weight 1.0 1.0 1.0 1.0
Robustness weight 0.01 0.01 0.01 0.01
Effort weight 0.0005 0.0005 0.0005 0.0005

Table 6.9: Parameters of the meta-level algorithms for S5

Parameter Name Values
Algorithm GA
Maximum generations 100
Population size 500
Mutation probability 15%
Elites 1
Selection operator Tournament
Mutation operator ReplaceBranchManipulation,

ChangeNodeTypeManipulation,
OnePointShaker

Crossover operator SubtreeCrossover
Evaluation operator R-Square
Training partition 0–3999
Test partition 4000–4999
Enabled Symbols Constant, Variable, Addition, Subtraction,

Multiplication, Division, Average,
Logarithm, Root, Power

Init. freq. (Logarithm) 0–5:0.01
Init. freq. (Root) 0–5:0.01
Init. freq. (Power) 0–5:0.01
Additive sigma (Constant) 0.01–10:0.0
Multiplicative sigma (Constant) 0.01–10:0.0
Weight sigma (Variable) 0.01–10:0.0
Additive weight sigma (Variable) 0.01–10:0.0
Multiplicative weight sigma (Variable) 0.01–10:0.0

Table 6.10: Parameter configuration (c4) of the base-level algorithm for S5

6. Experimental Results 63

the composition of a distillation tower. It consists of 13 attributes and 5000
instances. The goal is to use regression to find an expression which describes
a target variable as accurately as possible. All variables are normalized to a
scale of 0.0 – 1.0, so that the resulting sigma-values can be related to the actual
variable ranges. As the R2 evaluator is used the theoretical best quality value is
1.0.

6.5.4 Results and Discussion

Table 6.11 shows the optimal parameters of the symbolic expression gram-
mar, identified by four independent meta-optimization runs performed for this
scenario. The table also shows the average quality (R2 on the test-partition)
of the best solution found. To validate the best solution found by the meta-
optimization the settings were repeated in an independent experiment with 30
repetitions each. The results are also shown in the table. To be able to compare
the success of this scenario a comparison with the default settings for symbolic
expression grammars is also performed (p(default)). The qualities of the best
solutions do yield above 0.9 which is an excellent value.

The initial frequencies of the Logarithm, Root and Power symbol range be-
tween 0.1 and 4.6 which seems to be very random considering that the allowed
optimization range is between 0.0 and 5.0. Although most values lie above 1.0,
which is the default, it seems that the base-level algorithm is not very sensitive
to the initial frequencies of non-linear symbols. The additive and multiplica-
tive sigma values for the Constant symbol are also very randomly distributed
and significantly higher than the default values (1.0 and 0.03). Especially the
multiplicative sigma is many factors higher than the default value. In addition,
the sigmas for the manipulation of variable weights are significantly higher than
what is suggested as default value. All optimized grammars yield higher quali-
ties than the default grammar settings. One particular model has been chosen
from one of the test runs of p(c4, f7,m6) to show how the model can predict the
expected output. Figure 6.9 and 6.10 show a scatter plot and a line chart with
the expected and the predicted value for training and test data.

Generally what the results reveal is that the GP algorithm in place is quite
robust regarding the sigmas and initial frequencies in the grammar. However,
some improvement is possible if the sigma values are increased significantly
compared to the default values in HL.

6.6 Scenario 6: Symbolic Expression Grammar for
Classification

This scenario (S6) is aimed at analyzing the impact of changes to the sym-
bolic expression grammar for classification problems. In particular, the initial
frequencies of conditional symbols and constants are optimized for four different

6. Experimental Results 64

p(default) p(c4, f7, m4) p(c4, f7, m5) p(c4, f7, m6) p(c4, f7, m7)
Init. freq. (Logarithm) 1.00 4.53 3.31 4.07 4.53
Init. freq. (Root) 1.00 4.61 3.03 3.27 0.11
Init. freq. (Power) 1.00 2.57 2.29 1.59 1.14
Additive sigma (Constant) 1.00 3.79 1.22 8.43 5.34
Multiplicative sigma (Constant) 0.03 4.74 7.54 0.46 4.24
Weight sigma (Variable) 1.00 7.28 7.38 4.36 3.97
Additive weight sigma (Variable) 0.05 6.64 1.68 3.06 5.03
Multiplicative weight sigma (Variable) 0.03 2.14 3.52 1.65 5.86
Generations 100 100 100 100
Evaluated solutions 2930 2930 2930 2930
CPU time (days) 29.5 41.1 41.3 70.6
Average quality 0.8992 0.9041 0.9033 0.8915
Standard deviation 0.0074 0.0087 0.0047 0.0109
Average quality (30 repetitions) 0.8486 0.8729 0.8736 0.8642 0.8741
Standard deviation (30 repetitions) 0.0330 0.0250 0.0282 0.0391 0.0353

Table 6.11: Best solutions of the meta-optimization runs for S5

Figure 6.9: Shows how the estimated values
correlate with the target values.

Figure 6.10: Shows a small section of the line
chart with the target values and the estimated
values for the training and test partition.

classification problem instances. A GA is used as meta-level algorithm and an
OSGA is used as base-level algorithm. The goal of this scenario is to find the
optimal proportions of constant and conditional symbols in symbolic expres-
sion trees. If the initial frequency of symbols that are needed very often is too
low, the OSGA needs more iterations to find good solutions. If it is too high, it
might produce large and inefficient expression trees too often. Furthermore, the
optimal initial frequencies for boolean symbols, which are used in conditional

6. Experimental Results 65

Parameter Name m8

Algorithm GA
Maximum generations 100
Population size 30
Mutation probability 30%
Elites 1
Selection operator Proportional
Mutation operator OnePosition
Mutation operator (IntValue) Normal
Mutation operator (DoubleValue) Normal
Crossover operator (IntValue) Normal
Crossover operator (DoubleValue) Normal
Evaluation repetitions 6
Quality weight 1.0
Robustness weight 0.01
Effort weight 0.0001

Table 6.12: Parameters of the meta-level algorithm for S6

symbols, should be optimized.

6.6.1 Meta-Level Algorithm

The parameters of the GA that is used on the meta-level are shown in Table 6.12.

6.6.2 Base-Level Algorithm

The parameters of the OSGA that is used as base-level algorithm are shown in
Table 6.13. The table also shows the optimization configuration for the symbolic
expression grammar. The initial frequency of the Constant symbol is optimized
in the range of 1–20, and the conditional symbols are optimized in the range of
0–20. The initial frequencies of all other symbols are fixed at 1.0. The training
and test partitions are different for each base-level problem as each problem has
a different number of rows. The approximate runtime of the base-level algorithm
varies is between 15 and 60 minutes, depending on the problem.

6.6.3 Base-Level Problems

In this scenario, four classification problem instances are used as base-level prob-
lems. All data sets have been scaled to values from -1.0 to 1.0. The following
list gives some background information about each problem instance:

• f8:Melanoma: This data set is provided by the Department of Dermatol-
ogy of the Medical University Vienna and contains medical measurements
from potential skin cancer patients. It contains 1311 instances with 30 at-
tributes, from which 90.5% are diagnosed with skin cancer and 9.5% are
healthy.

6. Experimental Results 66

Parameter Name Values
Algorithm OSGA
Maximum generations 100
Population size 500
Mutation probability 15%
Elites 1
Selection operator GenderSpecific (Random, Proportional)
Mutation operator ReplaceBranchManipulation,

ChangeNodeTypeManipulation,
OnePointShaker, FullTreeShaker

Crossover operator SubtreeCrossover
Evaluation operator Mean Squared Error
Training partition f8: 0–999, f9: 0–999,

f10: 0–699, f11: 0–399
Test partition f8: 1000–1311, f9: 1000–1517,

f10: 700–999, f11: 400–569
Enabled Symbols Constant, Variable, Addition, Subtraction,

Multiplication, Division, IfThenElse,
GreaterThan, LessThan, And, Or, Not

Init. freq. (Constant) 1–20:0.01
Init. freq. (IfThenElse) 0–20:0.01
Init. freq. (GreaterThan) 0–20:0.01
Init. freq. (LessThan) 0–20:0.01
Init. freq. (And) 0–20:0.01
Init. freq. (Or) 0–20:0.01
Init. freq. (Not) 0–20:0.01

Table 6.13: Parameter configuration (c5) of the base-level algorithm for S6

• f9: Prostate: This data set is provided by the Central Blood Laboratory
of the General Hospital Linz, Austria and was measured in the years 2005–
2008. It contains 1517 instances with 27 routinely measured blood values
of patients diagnosed with prostate cancer (75%) as well as from healthy
persons (25%).

• f10: Respiratory: This data set is also provided by the Central Blood
Laboratory of the General Hospital Linz, Austria and was measured in
the years 2001–2008. It contains 999 instances with 27 routinely measured
blood values of patients diagnosed with cancer in the respiratory system
(75%) as well as from healthy persons (25%).

• f11: Wisconsin: The Wisconsin breast cancer dataset is provided by the
UCI machine learning repository2 and contains and 569 instances with 32
attributes of breast cancer patients (37%) as well as from healthy persons
(63%).

2http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

6. Experimental Results 67

p(c5, f8) p(c5, f9) p(c5, f10) p(c5, f11)
Init. freq. (Constant) 1,75 16,66 1,00 2,59
Init. freq. (IfThenElse) 7,67 0,22 13,96 1,86
Init. freq. (GreaterThan) 3,09 18,59 12,90 13,92
Init. freq. (LessThan) 13,26 11,87 5,78 13,11
Init. freq. (And) 8,87 15,84 4,61 3,39
Init. freq. (Or) 17,05 17,04 13,90 16,13
Init. freq. (Not) 3,97 14,68 3,38 6,35
Generations 75 85 58 94
Evaluated solutions 2205 2495 1712 2756
CPU time (days) 293.4 456.4 261.4 278.6
Average quality (MSE on test) 0.1052 0.6141 0.3121 0.1244
Quality standard deviation 0.0166 0.0127 0.0227 0.0378
Average evaluated solutions 981’916 1’113’966 915’816 1’020’616
Average MSE on test (30 repetitions) 0.1378 0.6406 0.3312 0.2057
Standard deviation of MSE on test (30 repetitions) 0.0212 0.1823 0.0401 0.0558
Average accuracy on test (30 repetitions) 96.3% 78.9% 90.2% 93.6%

Table 6.14: Shows the best solutions of the meta-optimization runs for S6 as
well as the results of independent experiments with 30 repetitions.

6.6.4 Results and Discussion

For each of the base-level problems one meta-optimization run was executed with
the configuration c5. Table 6.14 shows the best solutions found in each run. Due
to extremely high runtime demands, the runs had to be aborted prematurely so
none of them reached the 100th generation. The results were validated by running
an independent experiment with 30 repetitions for each parameterization. Just
as in S5, it can be observed that the results from these experiments are slightly
worse than the average qualities from the meta-optimization runs. The problem
could be that because elitism is used and the evaluation of a solution candidate
is stochastic, one evaluation might yield a higher quality and the solution can-
didate becomes the elite individual. It therefore does not necessarily represent
the quality to be expected with these settings, but the best quality that was
achieved with this parameterization during the whole meta-optimization run.

The results show quite different and seemingly random initial frequencies for
each problem instance. To validate these results, they were cross-tested with all
problem instances. Figure 6.11 shows the results of the cross-tests. The figure
clearly shows that the optimized settings are always equal or better than all
other settings (including the default settings) on each problem. A little bit of
an outlier is p(c5, f9) which has an extremely high initial frequency for the
Constant symbol and an extremely low initial frequency for the IfThenElse
symbol. Interestingly the cross-tests show that these parameter values perform
indeed very well on f9, while they perform bad on all other problems.

OSGAs are very robust algorithms and the optimization of initial frequen-

6. Experimental Results 68

0,138 0,138

0,188

0,138 0,139

0,0000

0,0500

0,1000

0,1500

0,2000

0,2500

0,3000

0,1000

0,1200

0,1400

0,1600

0,1800

0,2000
f8

0,652

0,662

0,641

0,656

0,667

0,0000

0,1000

0,2000

0,3000

0,4000

0,5000

0,6300

0,6400

0,6500

0,6600

0,6700
f9

0,377

0,345

0,445

0,331

0,382

0,0000

0,1000

0,2000

0,3000

0,4000

0,5000

0,3000

0,3200

0,3400

0,3600

0,3800

0,4000

0,4200

0,4400

0,4600
f10

0,217

0,234

0,225
0,227

0,206

0,0000

0,1000

0,2000

0,3000

0,4000

0,5000

0,6000

0,7000

0,2000

0,2100

0,2200

0,2300

0,2400

f11

Figure 6.11: The thick bars show the average MSE on the test partition on the
problem instances f8, f9, f10 and f11. The thin bar shows the standard deviations
on the secondary scale. Each problem instance was optimized with the default
settings as well as with the settings that resulted from the meta-optimization
runs of S6. Each combination was repeated 30 times.

cies for constants and conditional symbols yielded very humble improvements.
Nevertheless the meta-optimization approach was able to find parameter values
which are slightly better than the default values and it has been shown the
different results for each problem instance are legitimate.

Chapter 7

Conclusion and Outlook

The main goal of this thesis was to automate the search for optimal parameters
for metaheuristic optimization algorithms by using a meta-algorithm. In order
to achieve this goal a parameter optimization problem was implemented for the
optimization environment HeuristicLab.

As described in Chapter 2 there exist several approaches to parameter meta-
optimization (PMO). The solution presented in this thesis combined the pos-
itive aspects of these approaches. A novel concept introduced in this thesis is
the generic design that makes meta- and base-level algorithms arbitrarily ex-
changeable as long as the necessary operators are implemented. The flexible
and open architecture of HL made this generic approach possible. Besides the
obvious advantage of being able to optimize any base-level algorithm, it is also
beneficial to be able to choose the meta-level optimizer from existing algorithms
that are well known. Inspired by HL’s flexible plugin infrastructure, the PMO
implementation was designed to be easily extendable by new operators and pa-
rameter data types, without changing any existing code. It has been shown in
the example of symbolic expression trees that such extensions are possible with-
out much effort. Driven by HL’s focus on usability, a simple yet flexible user
interface has been created for PMO. A user can select the algorithm and the
problem that should be optimized. Further, it is possible to define which pa-
rameters should remain fixed and which should be optimized. Search ranges for
individual parameters can be defined to shrink the search space. A user can
select multiple base-level problems for which the optimal behavioral algorithm
parameters should be found. To avoid over- or underweighting problems, nor-
malization is applied to the results of each base-level problem. The presented
PMO implementation supports multi-objective parameter optimization by using
a normalized weighted sum of the three objectives average quality, robustness
and effort.

A novel feature for meta-optimization that has been introduced in this the-
sis is the optimization of the properties of symbolic expression grammars for
symbolic regression and classification. Symbolic expression grammars are repre-

69

7. Conclusion and Outlook 70

sented as custom data types in HL, yet the effort for extending PMO to support
them was minimal which has clearly shown the flexible design of the PMO ap-
proach.

To show the validity of the PMO implementation presented in this thesis a
number of optimization scenarios, which resemble the complexities of real-world
problems, was performed. Since this is a very runtime intensive task, these exper-
iments were executed in the distributed computation environment HeuristicLab
Hive which is deployed at the University of Applied Sciences Upper Austria.
The experiments in Scenario 1 have shown that the optimal parameters can
differ significantly when the same test-function problem with different problem
dimensions is used. In Scenario 2, very interesting parameters with extremely
high mutation probabilities and a high number of elites were identified as best
parameter settings. It indicates that the best parameters can be far off the de-
fault and commonly used settings. In Scenario 3, the effect of using different
numbers of iterations on the parameters was analyzed. It was shown that in
the case of real-value test-functions with 10’000 iterations, it is beneficial to
use operators which perform small manipulations on the solution candidates.
In Scenario 4 and 5, the symbolic expression grammars for regression and clas-
sification problems were optimized. It has been shown that the default values
for the manipulation sigmas of variable weights and constants are set too low
in HeuristicLab. Of course, this fact can differ depending on the actual prob-
lem instance. In the case of classification, the optimization of initial frequencies
of constants and conditional symbols yielded very humble results, especially in
respect to the huge amounts of runtime spent on these runs. In that case, the
default settings of HeuristicLab are appropriate.

Concluding, the approach of using a meta-level algorithm to find the optimal
parameters has proven to work very well on some problems. It is possible to
find parameter value combinations that are very different from commonly used
settings. This functionality comes at the cost of huge runtime demands. The
total sum of CPU time used for the experiments in this thesis amounts to over
7.5 years.

The advancements in computing power in the recent years have made this
thesis possible at that scale. Parallelization and distributed computing has been
used to perform experiments. However, there is room for improvement in terms
of runtime performance. Two ways to optimize runtime would be racing and
sharpening [53]. When racing is used, promising solution candidates are evalu-
ated more often than bad solution candidates. With sharpening, the number of
repetitions is increased depending on the current generation. In this way, the
solution evaluation is faster in the beginning of the optimization process and
gets more and more precise towards the end.

An idea to make future development of PMO easier would be to provide
benchmark problems for parameter settings. Such a benchmark problem could
have a generated meta-fitness landscape. Evaluating a solution candidate would
only require to lookup a value, so that the evaluation of solution candidates

7. Conclusion and Outlook 71

would become extremely fast. Of course, the fitness evaluation should underlie
a stochastic distribution, just as real evaluations of parameter settings. This
would make it much easier to tune the parameters of a meta-level optimizer.

Bibliography

[1] Affenzeller, M. and S. Wagner: Offspring selection: A new self-adaptive
selection scheme for genetic algorithms. In Ribeiro, B., R.F. Albrecht,
A. Dobnikar, D.W. Pearson, and N.C. Steele (eds.): Adaptive and Natural
Computing Algorithms, Springer Computer Series, pp. 218–221. Springer,
2005.

[2] Affenzeller, M., S. Winkler, and S. Wagner: Evolutionary systems identifi-
cation: New algorithmic concepts and applications. In Kosinski, W. (ed.):
Advances in Evolutionary Algorithms, ch. 2, pp. 29–48. IN-TECH, 2008.

[3] Affenzeller, M., S. Winkler, S. Wagner, and A. Beham: Genetic Algorithms
and Genetic Programming - Modern Concepts and Practical Applications.
Numerical Insights. CRC Press, 2009.

[4] Bartz-Beielstein, T., C. Lasarczyk, and M. Preuss: Sequential Parameter
Optimization. IEEE, 2005.

[5] Bäck, T.: Optimal mutation rates in genetic search. In Proceedings of
the fifth International Conference on Genetic Algorithms, pp. 2–8. Morgan
Kaufmann, 1993.

[6] Bäck, T.: Parallel optimization of evolutionary algorithms. Lecture Notes
In Computer Science, 866:418–427, 1994.

[7] Bäck, T. and H.P. Schwefel: An overview of evolutionary algorithms for
parameter optimization. Evolutionary Computation, 1(1):1–23, 1993.

[8] Bellman, R. and R. Corporation: Dynamic programming. Rand Corporation
research study. Princeton University Press, 1957.

[9] Beyer, H.G. and H.P. Schwefel: Evolution strategies - A comprehensive in-
troduction. Natural Computing, 1(1):3–52, 2002.

[10] Blum, C. and A. Roli: Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Compututing Surveys, 35:268–
308, 2003.

72

Bibliography 73

[11] Cormen, T.H., C.E. Leiserson, R.L. Rivest, and C. Stein: Introduction to
Algorithms. MIT Press, 2nd ed., 2001.

[12] Dantzig, G.B.: Linear Programming and Extensions. Princeton University
Press, 1963.

[13] Darwin, C.: The Origin of Species. Wordsworth Classics of World Litera-
ture. Wordsworth Editions, 1998.

[14] De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, 1975.

[15] Deb, K. and R.B. Agrawal: Simulated binary crossover for continuous
search space. Complex Systems, 9:115–148, 1995.

[16] Deb, K. and M. Goyal: A combined genetic adaptive search (geneas) for
engineering design. Computer Science and Informatics, 26:30–45, 1996.

[17] Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan: A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[18] Dumitrescu, D., B. Lazzerini, L.C. Jain, and A. Dumitrescu: Evolutionary
Computation. CRC Press, 2000.

[19] Eberhart, R. and J. Kennedy: A new optimizer using particle swarm theory.
In Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, pp. 39–43, 1995.

[20] Eiben, A.E., Z. Michalewicz, M. Schoenauer, and J.E. Smith: Parameter
control in evolutionary algorithms. IEEE Transactions on Evolutionary
Computation, 3:124–141, 1999.

[21] Eiben, A.E. and J.E. Smith: Introduction to Evolutionary Computation.
Natural Computing Series. Springer, 2003.

[22] Fogel, D.: An evolutionary approach to the traveling salesman problem. Bi-
ological Cybernetics, 60:139–144, 1988.

[23] Fogel, D., L. Fogel, and J. Atmar: Meta-evolutionary programming. In
Signals, Systems and Computers, pp. 540–545. IEEE Computer Society
Press, 1991.

[24] Fogel, D.B.: Applying evolutionary programming to selected traveling sales-
man problems. Cybernetics and Systems, 24:27–36, 1993.

[25] Glover, F. and G.A. Kochenberger: Handbook of Metaheuristics, vol. 57
of International Series in Operations Research & Management Science.
Kluwer, 2003.

Bibliography 74

[26] Grefenstette, J.: Optimization of control parameters for genetic algorithms.
IEEE Transactions on Systems, Man, and Cybernetics, 16(1):122–128,
1986.

[27] Griewank, A.O.: Generalized descent for global optimization. Journal of
Optimization Theory and Applications, 34:11–39, 1981.

[28] Gustafson, S., E. Burke, and N. Krasnogor: On improving genetic program-
ming for symbolic regression. In IEEE Congress on Evolutionary Compu-
tation, pp. 912–919, 2005.

[29] Holland, J.H.: Adaption in Natural and Artificial Systems. University of
Michigan Press, 1975.

[30] Horn, J., N. Nafpliotis, and D. Goldberg: A niched pareto genetic algorithm
for multiobjective optimization. In IEEE World Congress on Computational
Intelligence, pp. 82–87, 1994.

[31] Iunescu, M.: Parameter Optimization of Genetic Algorithms by Means of
Evolution Strategies in a Grid Environment. PhD thesis, Johannes Kepler
Universität Linz, 2006.

[32] Kennedy, J. and R. Eberhart: Particle swarm optimization. In IEEE In-
ternational Conference on Neural Networks, pp. 1942–1948, 1995.

[33] Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi: Optimization by simulated
annealing. Science, 220:671–680, 1983.

[34] Koza, J.R.: On the programming of computers by means of natural selection.
MIT Press, 1992.

[35] Land, A.H. and A.G. Doig: An automatic method of solving discrete pro-
gramming problems. Econometrica, 28:497–520, 1960.

[36] Landgraaf, W. de, A. Eiben, and V. Nannen: Parameter calibration using
meta-algorithms. IEEE, 2007.

[37] Larranaga, P., C.M.H. Kuijpers, R.H. Murga, I. Inza, and D. Dizdarevic:
Genetic algorithms for the travelling salesman problem: A review of repre-
sentations and operators. Artificial Intelligence Review, 13:129–170, 1999.

[38] Meissner, M., M. Schmuker, and G. Schneider: Optimized particle swarm
optimization (opso) and its application to artificial neural network training.
BMC Bioinformatics, 7(1):125, 2006.

[39] Mercer, R. and J. Sampson: Adaptive search using a reproductive metaplan.
Kybernetes, 7(3):215–228, 1978.

Bibliography 75

[40] Mühlenbein, H.: Evolution in time and space - the parallel genetic algorithm.
In Foundations of Genetic Algorithms, pp. 316–337. Morgan Kaufmann,
1991.

[41] Mühlenbein, H. and D. Schlierkamp-Voosen: Predictive models for the
breeder genetic algorithm i. continuous parameter optimization. Evolution-
ary Computation, 1:25–49, 1993.

[42] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer, 3rd ed., 1999.

[43] Michalewicz, Z. and B. Fogel: How to Solve It: Modern Heuristics. Springer,
2000.

[44] Michalewicz, Z. and M. Schoenauer: Evolutionary algorithms for con-
strained parameter optimization problems. Evolutionary Computation, 4:1–
32, 1996.

[45] Nannen, V. and A. Eiben: A method for parameter calibration and rele-
vance estimation in evolutionary algorithms. Genetic And Evolutionary
Computation Conference, pp. 183–190, 2006.

[46] Ochoa, G., I. Harvey, and H. Buxton: Optimal mutation rates and selection
pressure in genetic algorithms. In Genetic And Evolutionary Computation
Conference, 2000.

[47] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, 1994.

[48] Pedersen, E.M.H.: Tuning & Simplifying Heuristical Optimization. PhD
thesis, University of Southampton, 2010.

[49] Pedersen, M. and A. Chipperfield: Local unimodal sampling. Techn. rep.,
Hvass Laboratories, 2008.

[50] Pomberger, G. and H. Dobler: Algorithmen und Datenstrukturen: Eine sys-
tematische Einführung in die Programmierung. Pearson Studium, 2008.

[51] Rechenberg, I.: Evolutionsstrategie - Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

[52] Schwefel, H.P.P.: Evolution and Optimum Seeking: The Sixth Generation.
John Wiley & Sons, Inc., 1993.

[53] Smit, S.K. and A.E. Eiben: Comparing parameter tuning methods for evo-
lutionary algorithms. In IEEE Congress on Evolutionary Computation, pp.
399–406, 2009.

[54] Storn, R. and K. Price: Differential evolution – A simple and efficient
heuristic for global optimization over continuous spaces. Journal of Global
Optimization, 11:341–359, 1997.

Bibliography 76

[55] Syswerda, G.: Schedule optimization using genetic algorithms. Handbook
of Genetic Algorithms, pp. 332–349, 1991.

[56] Takahashi, M. and H. Kita: A crossover operator using independent compo-
nent analysis for real-coded genetic algorithms. In Proceedings of the 2001
Congress on Evolutionary Computation, pp. 643–649, 2001.

[57] Tate, D.M. and A.E. Smith: A genetic approach to the quadratic assignment
problem. Computers & Operations Research, 22:73–83, 1995.

[58] Ulder, N.L.J., E.H.L. Aarts, H.J. Bandelt, P.J.M. van Laarhoven, and
E. Pesch: Genetic local search algorithms for the travelling salesman prob-
lem. In Parallel Problem Solving from Nature, pp. 109–116. Springer, 1991.

[59] Wagner, S.: Heuristic optimization software systems-Modeling of Heuristic
Optimization Algorithms in the HeuristicLab Software Environment. PhD
thesis, Johannes Kepler University, Linz, Austria, 2009.

[60] Wagner, S. and M. Affenzeller: SexualGA: Gender-specific selection for ge-
netic algorithms. In Proceedings of the 9th World Multi-Conference on
Systemics, Cybernetics and Informatics, vol. 4, pp. 76–81. International
Institute of Informatics and Systemics, 2005.

[61] Walsh, G.R.: Methods of Optimization. John Wiley and Sons, 1975.

[62] Wendt, O.: COSA: Cooperative Simulated Annealing - Integration von
Genetischen Algorithmen und Simulated Annealing am Beispiel der Touren-
planung. PhD thesis, IWI Frankfurt, 1994.

[63] Whitley, D.: A free lunch proof for gray versus binary encodings. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference, vol. 1,
pp. 726–733. Morgan Kaufmann, 1999.

[64] Whitley, D., T. Starkweather, and D. Shaner: The traveling salesman and
sequence scheduling: Quality solutions using genetic edge recombination. In
Handbook of Genetic Algorithms, pp. 350–372, 1990.

[65] Wolpert, D.H. and W.G. Macready: No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[66] Wright, A.H.: Genetic algorithms for real parameter optimization. In Foun-
dations of Genetic Algorithms, pp. 205–218. Morgan Kaufmann, 1991.

List of Figures

2.1 Taxonomy of optimization techniques [2] 6
2.2 Visualization of the two-dimensional Griewank function 11
2.3 Taxonomy of parameter setting [20] 18
2.4 Meta-optimization concept . 20

3.1 Hive components . 26
3.2 Exemplary Hive slave deployment with external companies . . . 28

5.1 Interfaces for parameters in HL 32
5.2 This figure shows the parameters and the parameter types of a

GA, a test function problem and a tournament selection operator. 33
5.3 Classes of the parameter configuration tree solution encoding for

PMO . 34
5.4 Object graph of a simplified example of a PMO solution encoding

for the parameters of a GA . 36
5.5 Shows the configuration options for the MutationProbability pa-

rameter. The left list-box shows the parameter configurations of
a GA. The middle list-box shows a list of value configurations
and the right panel shows the configuration options for a range. . 37

5.6 Shows the configuration options for the Selectior parameter. The
middle list-box shows a list of possible values (value configura-
tions). Each of them can have child-parameters which can also
be optimized. 38

5.7 Configuration options of the Variable symbol 40
5.8 The population analyzer shows a list of individuals of the cur-

rent population of a meta-optimization run. Detailed information
about the fitness and the parameter values of each individual are
available. 46

77

List of Figures 78

5.9 The image on the left shows the diversity of a population of 30
solution candidates in an early stage of the optimization process.
The red diagonal indicates that every individual has a similar-
ity of one to itself while the similarity to the other solutions is
quite low. The image on the right shows the population diver-
sity in a later stage of the optimization process. Some groups of
individuals are very similar to each other, indicated by red color. 47

6.1 Average qualities achieved by different parameterizations for the
problems f1 to f4. Each parameterization (p) was repeated 10
times on each base-level problem. 52

6.2 One-dimensional exploration of the meta-fitness-landscape for the
Elites parameter of p(c1, f1). Each dot represents a run. 10 rep-
etitions were performed for each value. 53

6.3 One-dimensional exploration of the meta-fitness-landscape for the
MutationProbabilty parameter of p(c1, f1). Each dot represents a
run. 10 repetitions were performed for each value. 53

6.4 One-dimensional exploration of the meta-fitness-landscape for the
GroupSize parameter of p(c1, f1). Each dot represents a run. 10
repetitions were performed for each value. Both charts show the
same runs, only the right one is zoomed to make the best value
of 5 visible. 54

6.5 Average qualities achieved by different parameterizations for the
problems f1 to f4. Each parameterization p was repeated 10 times
on each base-level problem. 55

6.6 Shows the quality history of a GA run for f1 over 10’000 genera-
tions. The settings that were used in this run were optimized for
1’000 generations. 57

6.7 Shows the quality history of a GA run for f1 over 10’000 genera-
tions. The settings that were used in this run were optimized for
10’000 generations. 57

6.8 Exploration of the parameters Elites andGroupSize of p(c3, f5,m3).
The Elites parameter is varied in the range of 0–30, the Group-
Size parameter in the range of 2–30. The z-axis shows the aver-
age difference to the best known quality of 10 repetitions for each
combination. 60

6.9 Shows how the estimated values correlate with the target values. 64

6.10 Shows a small section of the line chart with the target values and
the estimated values for the training and test partition. 64

List of Figures 79

6.11 The thick bars show the average MSE on the test partition on
the problem instances f8, f9, f10 and f11. The thin bar shows
the standard deviations on the secondary scale. Each problem
instance was optimized with the default settings as well as with
the settings that resulted from the meta-optimization runs of S6.
Each combination was repeated 30 times. 68

List of Tables

6.1 Parameters of the meta-level algorithm (m1) for S1 50
6.2 Parameter configuration (c1) of the base-level algorithm for S1 . 51
6.3 Solutions of the meta-optimization runs for S1 52
6.4 Solutions of the meta-optimization runs for S2. Note that PMO

for f3, f4, and f5 has been stopped before reaching 100 genera-
tions due to time constraints. 55

6.5 Shows the qualities (average of 10 runs) of a multiple GA runs
with different settings for a different number of generations. . . . 56

6.6 Parameters of the meta-level algorithms for S4 58
6.7 Parameter configuration (c3) of the base-level algorithm for S4 . 59
6.8 Solutions of the meta-optimization runs for S4 59
6.9 Parameters of the meta-level algorithms for S5 62
6.10 Parameter configuration (c4) of the base-level algorithm for S5 . 62
6.11 Best solutions of the meta-optimization runs for S5 64
6.12 Parameters of the meta-level algorithm for S6 65
6.13 Parameter configuration (c5) of the base-level algorithm for S6 . 66
6.14 Shows the best solutions of the meta-optimization runs for S6 as

well as the results of independent experiments with 30 repetitions. 67

80

	Erklärung
	Abstract
	Kurzfassung
	Introduction
	Motivation and Goal
	Structure and Content

	Theoretical Foundations
	Metaheuristic Optimization
	Trajectory-Based Metaheuristics
	Population-Based Metaheuristics
	Optimization Problems
	Operators

	Parameter Optimization
	Parameter Control
	Parameter Tuning

	Related Work in Meta-Optimization

	Technical Foundations
	HeuristicLab
	Key Concepts
	Algorithm Model

	HeuristicLab Hive
	Components

	Requirements
	Implementation
	Solution Encoding
	Parameter Trees in HeuristicLab
	Parameter Configuration Trees
	Search Ranges
	Symbolic Expression Grammars

	Fitness Function
	Handling of Infeasible Solutions

	Operators
	Solution Creator
	Evaluator
	Mutation
	Crossover

	Analysis
	Population Analyzer
	Best Solution History Analyzer
	Population Diversity Analyzer
	Solution Cache Analyzer
	Exhaustive Search

	Experimental Results
	Scenario 1: Varying Problem Dimensions, Short Runtime
	Meta-Level Algorithm
	Base-Level Algorithm
	Base-Level Problems
	Results and Discussion

	Scenario 2: Varying Problem Dimensions, Long Runtime
	Results and Discussion

	Scenario 3: Varying Generations
	Scenario 4: Varying Problem Instances
	Meta-Level Algorithm
	Base-Level Algorithm
	Base-Level Problems
	Results and Discussion

	Scenario 5: Symbolic Expression Grammar for Regression
	Meta-Level Algorithm
	Base-Level Algorithm
	Base-Level Problem
	Results and Discussion

	Scenario 6: Symbolic Expression Grammar for Classification
	Meta-Level Algorithm
	Base-Level Algorithm
	Base-Level Problems
	Results and Discussion

	Conclusion and Outlook
	Bibliography
	List of Figures
	List of Tables

