Effects of Constant Optimization by Nonlinear Least Squares Minimization in Symbolic Regression

Michael Kommenda, Gabriel Kronberger, Stephan Winkler, Michael Affenzeller, and Stefan Wagner

Contact:
Michael Kommenda
Heuristic and Evolutionary Algorithms Lab (HEAL)
Softwarepark 11
A-4232 Hagenberg

e-mail: michael.kommenda@fh-hagenberg.at
Web: http://heal.heuristiclab.com
http://heureka.heuristiclab.com
Model a relationship between input variables x and target variable y without any predefined structure

$$y = f(x, w) + \varepsilon$$

Minimization of ε using an evolutionary algorithm

- Model structure
- Used variables
 - Constants / weights
The correct model structure is found during the algorithm execution, but not recognized due to misleading / wrong constants.
Constants in Symbolic Regression

- **Ephemeral Random Constants**
 - Randomly initialized constants
 - Remain fixed during the algorithm run

- **Evolutionary Constants**
 - Updated by mutation
 - $C_{\text{new}} = C_{\text{old}} + N(0, \sigma)$
 - $C_{\text{new}} = C_{\text{old}} * N(1, \sigma)$

- **Finding correct constants**
 - combination of existing values
 - mutation of constant symbol nodes
 - undirected changes to values

Effects of Constant Optimization by Nonlinear Least Squares Minimization
Faster genetic programming based on **local gradient search** of numeric leaf values (Topchy and Punch, GECCO 2001)

Improving gene expression programming performance by using **differential evolution** (Zhang et al., ICMLA 2007)

Evolution Strategies for Constants Optimization in Genetic Programming (Alonso, ICTAI 2009)

Differential Evolution of Constants in Genetic Programming Improves Efficacy and Bloat (Mukherjee and Eppstein, GECCO 2012)
Improving Symbolic Regression with Interval Arithmetic and Linear Scaling (Keijzer, EuroGP 2003)

- Use Pearson’s R^2 as fitness function and perform linear scaling
 - Removes necessity to find correct offset and scale
 - Computationally efficient

Outperforms the local gradient search
Concept

- Treat all constants as parameters
- Local optimization step
- Multidimensional optimization

Levenberg-Marquardt Algorithm

- Least squares fitting of model parameters to empirical data
- \[\text{Minimize } Q(\beta) = \sum_{i=1}^{m} [y_i - f(x_i, \beta)]^2 \]
- Uses gradient and Jacobian matrix information
- Implemented e.g. by ALGLIB
Gradient Calculation

- **Transformation of symbolic expression tree**
 - Extract initial numerical values (starting point)
 - Add scaling tree nodes

- **Automatic differentiation**
 - Provided e.g. by AutoDiff
 - Numerical gradient calculation in one pass
 - Faster compared to symbolic differentiation

\[
\nabla f = \left(\frac{\partial f}{\partial \beta_1}, \frac{\partial f}{\partial \beta_2}, \ldots, \frac{\partial f}{\partial \beta_n} \right)
\]

- **Update tree with optimized values**
 - Optionally calculate new fitness

Effects of Constant Optimization by Nonlinear Least Squares Minimization
Improvement = \(\text{Quality}_{\text{optimized}} - \text{Quality}_{\text{original}} \)

Exemplary GP Run

- Average & median improvement stays constantly low
- Maximum improvement almost reaches the best quality found
- Crossover worsens good individuals
- The quality of few individuals can be dramatically increased
Symbolic regression benchmarks

- Better GP Benchmarks: Community Survey Results and Proposals (White et al., GPEM 2013)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Function</th>
<th>Training</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nguyen-7</td>
<td>$f(x) = \ln(x + 1) + \ln(x^2 + 1)$</td>
<td>20</td>
<td>500</td>
</tr>
<tr>
<td>Keijzer-6</td>
<td>$f(x, y, z) = \frac{30xz}{(x - 10)y^2}$</td>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>Vladislavleva-4</td>
<td>$f(x_1, \ldots, x_5) = \frac{10}{5 + \sum(x_i - 30)^2}$</td>
<td>1024</td>
<td>5000</td>
</tr>
<tr>
<td>Pagie-1</td>
<td>$f(x, y) = \frac{1}{1 + x^{-4}} + \frac{1}{1 + y^{-4}}$</td>
<td>676</td>
<td>1000</td>
</tr>
<tr>
<td>Poly-10</td>
<td>$f(x_1, \ldots, x_{10}) = x_1x_2 + x_3x_4 + x_5x_6 + x_1x_7x_9 + x_3x_6x_{10}$</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Friedman-2</td>
<td>$f(x_1, \ldots, x_{10}) = 10 \sin(\pi x_1x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5 + N(0,1)$</td>
<td>500</td>
<td>5000</td>
</tr>
<tr>
<td>Tower</td>
<td>Real world data</td>
<td>3136</td>
<td>1863</td>
</tr>
</tbody>
</table>

Effects of Constant Optimization by Nonlinear Least Squares Minimization
Algorithm Configurations

Genetic Programming with strict offspring selection
- Only child individuals with better quality compared to the fitter parent are accepted in the new generation

Varying parameters
- Population size of 500, 1000, and 5000 for runs without constant optimization
- Probability for constant optimization 25%, 50%, and 100% (population size 500)

All others parameters were not modified
- Maximum selection pressure of 100 was used as termination criterion
- Size constraints of tree length 50 and depth 12
- Mutation rate of 25%
- Function set consists solely of arithmetic functions (except Nguyen-7)
Results - Quality

Success rate (test $R^2 > 0.99$)

- OSGP 500
- OSGP 1000
- OGSP 5000
- CoOp 25%
- CoOp 50%
- CoOp 100%

Effect of Constant Optimization by Nonlinear Least Squares Minimization
Results - Quality

Noisy datasets

- Success rate not applicable
- R^2 of best training solution ($\mu \pm \sigma$)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Friedman-2</th>
<th>Tower</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training</td>
<td>Test</td>
</tr>
<tr>
<td>OSGP 500</td>
<td>0.836 ± 0.027</td>
<td>0.768 ± 0.172</td>
</tr>
<tr>
<td>OSGP 1000</td>
<td>0.857 ± 0.036</td>
<td>0.831 ± 0.102</td>
</tr>
<tr>
<td>OSGP 5000</td>
<td>0.908 ± 0.035</td>
<td>0.836 ± 0.191</td>
</tr>
<tr>
<td>CoOp 25%</td>
<td>0.959 ± 0.001</td>
<td>0.871 ± 0.151</td>
</tr>
<tr>
<td>CoOp 50%</td>
<td>0.967 ± 0.000</td>
<td>0.920 ± 0.086</td>
</tr>
<tr>
<td>CoOp 100%</td>
<td>0.964 ± 0.000</td>
<td>0.864 ± 0.142</td>
</tr>
</tbody>
</table>
Results – LM Iterations

Constant optimization probability of 50%
Varying iterations for the LM algorithm (3x, 5x, 10x)

- success rate
- respectively test R^2 for noisy datasets

<table>
<thead>
<tr>
<th>Problem</th>
<th>OGSP 5000</th>
<th>CoOp 50% 3x</th>
<th>CoOp 50% 5x</th>
<th>CoOp 50% 10x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nguyen-7</td>
<td>1.00</td>
<td>0.92</td>
<td>0.92</td>
<td>0.94</td>
</tr>
<tr>
<td>Keijzer-6</td>
<td>0.74</td>
<td>0.92</td>
<td>0.88</td>
<td>0.94</td>
</tr>
<tr>
<td>Vladislavleva-4</td>
<td>0.48</td>
<td>0.56</td>
<td>0.82</td>
<td>0.86</td>
</tr>
<tr>
<td>Pagie-1</td>
<td>0.20</td>
<td>0.26</td>
<td>0.52</td>
<td>0.74</td>
</tr>
<tr>
<td>Poly-10</td>
<td>0.62</td>
<td>0.78</td>
<td>0.88</td>
<td>0.94</td>
</tr>
<tr>
<td>Friedman-2</td>
<td>0.836 ± 0.191</td>
<td>0.946 ± 0.046</td>
<td>0.943 ± 0.076</td>
<td>0.920 ± 0.086</td>
</tr>
<tr>
<td>Tower</td>
<td>0.890 ± 0.009</td>
<td>0.902 ± 0.010</td>
<td>0.912 ± 0.008</td>
<td>0.921 ± 0.006</td>
</tr>
</tbody>
</table>
Feature Selection Problems

Artificial datasets
- 100 input variables \(N(0,1) \)
- Linear combination of 10/25 variables with weights \(U(0,10) \)
- noisy \(\rightarrow \) max \(R^2 = 0.90 \)
- Training 120 rows, Test 500 rows
- Population size 500
- Constant optimization 50% 5x

Observation
- Constant optimization can lead to overfitting
- Selection of correct features is also an issue
Conclusion

Constant optimization improves the success rate and quality of models
- Better results with smaller population size
- Especially useful for post-processing of models

Removes the effort of evolving correct constants
- Genetic programming can concentrate on the model structure and feature selection

Ready-to-use implementation in HeuristicLab
- Configurable probability, iterations, random sampling
- All experiments available for download
- http://dev.heuristiclab.com/AdditionalMaterial
Effects of Constant Optimization by Nonlinear Least Squares Minimization in Symbolic Regression

Michael Kommenda, Gabriel Kronberger, Stephan Winkler, Michael Affenzeller, and Stefan Wagner