Algorithm and Experiment Design with HeuristicLab

An Open Source Optimization Environment for Research and Education

S. Wagner
Heuristic and Evolutionary Algorithms Laboratory (HEAL)
School of Informatics/Communications/Media, Campus Hagenberg
University of Applied Sciences Upper Austria
Instructor Biography

- Stefan Wagner
 - MSc in computer science (2004)
 Johannes Kepler University Linz, Austria
 - PhD in technical sciences (2009)
 Johannes Kepler University Linz, Austria
 - Associate professor (2005 – 2009)
 University of Applied Sciences Upper Austria
 - Full professor for complex software systems (since 2009)
 University of Applied Sciences Upper Austria
 - Co-founder of the HEAL research group
 - Project manager and chief architect of HeuristicLab
 - http://heal.heuristiclab.com/team/wagner
Agenda

• Objectives of the Tutorial
• Introduction
• Where to get HeuristicLab?
• Plugin Infrastructure
• Graphical User Interface
• Available Algorithms & Problems

• Demonstration Part: Working with HeuristicLab

• Some Additional Features
• Planned Features
• Team
• Suggested Readings
• Bibliography
• Questions & Answers
Objectives of the Tutorial

• Introduce general motivation and design principles of HeuristicLab
• Show where to get HeuristicLab
• Explain basic GUI usability concepts
• Demonstrate basic features
• Demonstrate editing and analysis of optimization experiments
• Demonstrate custom algorithms and graphical algorithm designer
• Outline some additional features
Introduction

• Motivation and Goals
 – graphical user interface
 – paradigm independence
 – multiple algorithms and problems
 – large scale experiments and analyses
 – parallelization
 – extensibility, flexibility and reusability
 – visual and interactive algorithm development
 – multiple layers of abstraction

• Facts
 – development of HeuristicLab started in 2002
 – based on Microsoft .NET and C#
 – used in research and education
 – second place at the Microsoft Innovation Award 2009
 – open source (GNU General Public License)
 – version 3.3.0 released on May 18th, 2010
 – latest version 3.3.6 released on January 3rd, 2012

HeuristicLab Tutorial http://dev.heuristiclab.com 5
Where to get HeuristicLab?

- Download binaries
 - deployed as ZIP archives
 - latest stable version 3.3.6
 - released on January 3rd, 2012
 - daily trunk builds
 - http://dev.heuristiclab.com/download

- Check out sources
 - SVN repository
 - HeuristicLab 3.3.6 tag
 - http://dev.heuristiclab.com/svn/hl/core/tags/3.3.6
 - current development trunk
 - http://dev.heuristiclab.com/svn/hl/core/trunk

- License
 - GNU General Public License (Version 3)

- System requirements
 - Microsoft .NET Framework 4.0 Full Version
 - enough RAM and CPU power ;-}
Plugin Infrastructure

- HeuristicLab consists of many assemblies
 - 94 plugins in HeuristicLab 3.3.6
 - plugins can be loaded or unloaded at runtime
 - plugins can be updated via internet
 - application plugins provide GUI frontends

- Extensibility
 - developing and deploying new plugins is easy
 - dependencies are explicitly defined, automatically checked and resolved
 - automatic discovery of interface implementations (service locator pattern)

- Plugin Manager
 - GUI to check, install, update or delete plugins
Graphical User Interface

• HeuristicLab GUI is made up of views
 – views are visual representations of content objects
 – views are composed in the same way as their content
 – views and content objects are loosely coupled
 – multiple different views may exist for the same content

• Drag & Drop
 – views support drag & drop operations
 – content objects can be copied or moved (shift key)
 – enabled for collection items and content objects
Graphical User Interface

Algorithm View

Problem View

Parameter Collection View

Parameter View

Double Value View
Graphical User Interface

• ViewHost
 – control which hosts views
 – right-click on windows icon to switch views
 – double-click on windows icon to open another view
 – drag & drop windows icon to copy contents
Available Algorithms & Problems

Algorithms
- Evolution Strategy
- Genetic Algorithm
- Genetic Programming
- Island Genetic Algorithm
- Island Offspring Selection Genetic Algorithm
- Local Search
- NSGA-II
- Offspring Selection Genetic Algorithm
- Particle Swarm Optimization
- Robust Taboo Search
- SASEGASA
- Simulated Annealing
- Tabu Search
- User-defined Algorithm
- Variable Neighborhood Search
- Performance Benchmarks
- Cross Validation
- k-Means
- Linear Discriminant Analysis
- Linear Regression
- Multinomial Logit Classification
- Nearest Neighbor Regression and Classification
- Neural Network Regression and Classification
- Random Forest Regression and Classification
- Support Vector Regression and Classification

Problems
- Artificial Ant
- Classification
- Clustering
- External Evaluation Problem
- Knapsack
- OneMax
- Quadratic Assignment
- Regression
- Single-Objective Test Function
- Symbolic Classification
- Symbolic Regression
- Traveling Salesman
- User-defined Problem
- Vehicle Routing

HeuristicLab Tutorial http://dev.heuristiclab.com
Agenda

- Objectives of the Tutorial
- Introduction
- Where to get HeuristicLab?
- Plugin Infrastructure
- Graphical User Interface
- Available Algorithms & Problems

- Demonstration Part: Working with HeuristicLab

- Some Additional Features
- Planned Features
- Team
- Suggested Readings
- Bibliography
- Questions & Answers
Demonstration Part: Working with HeuristicLab

• Create, Parameterize and Execute Algorithms
• Save and Load Items
• Create Batch Runs and Experiments
• Multi-core CPUs and Parallelization
• Analyze Runs
• Analyzers
• Building User-Defined Algorithms
HeuristicLab Optimizer

Follow these steps to start working with HeuristicLab Optimizer:

1. Open an algorithm
 - click (New Item) in the toolbar and select an algorithm or click (Open File) in the toolbar and load an algorithm from a file

2. Open a problem in the algorithm
 - in the Problem tab of the algorithm click (New Problem) and select a problem or click (Open Problem) and load a problem from a file

3. Set parameters
 - set problem parameters in the Problem tab of the algorithm
 - set algorithm parameters in the Parameters tab of the algorithm

Sample algorithms and problems can be double-clicked to open.
Create Algorithm
Create or Load Problem
Import or Parameterize Problem Data
Parameterize Algorithm
Start, Pause, Resume, Stop and Reset
Inspect Results

HeuristicLab Tutorial
http://dev.heuristiclab.com
Compare Runs

- A run is created each time when the algorithm is stopped
 - runs contain all results and parameter settings
 - previous results are not forgotten and can be compared
Save and Load

• Save to and load from disk
 – HeuristicLab items (i.e., algorithms, problems, experiments, ...) can be saved to and loaded from a file
 – algorithms can be paused, saved, loaded and resumed
 – data format is custom compressed XML
 – saving and loading files might take several minutes
 – saving and loading large experiments requires some memory
Create Batch Runs and Experiments

• Batch runs
 – execute the same optimizer (e.g. algorithm, batch run, experiment) several times

• Experiments
 – execute different optimizers
 – suitable for large scale algorithm comparison and analysis

• Experiments and batch runs can be nested

• Generated runs can be compared afterwards
Create Batch Runs and Experiments

drag & drop here to add additional algorithms, batch runs, experiments, etc.
Clipboard

drag & drop here to add algorithms, problems, batch runs, experiments, etc.
Clipboard

• Store items
 – click on the buttons to add or remove items
 – drag & drop items on the clipboard
 – use the menu to add a copy of a shown item to the clipboard

• Show items
 – double-click on an item in the clipboard to show its view

• Save and restore clipboard content
 – click on the save button to write the clipboard content to disk
 – clipboard is automatically restored when HeuristicLab is started the next time
Start, Pause, Resume, Stop, Reset
Compare Runs
Analyze Runs

- HeuristicLab provides interactive views to analyze and compare all runs of a run collection
 - textual analysis
 - RunCollection Tabular View
 - graphical analysis
 - RunCollection BubbleChart
 - RunCollection BoxPlots

- Filtering is automatically applied to all open run collection views
RunCollection Tabular View

<table>
<thead>
<tr>
<th>Run</th>
<th>BestKnownQuality</th>
<th>BestKnownSolution</th>
<th>BestQuality</th>
<th>Coordinates</th>
<th>Crossover</th>
<th>Current/AverageQuality</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>14783</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>15029.02</td>
</tr>
<tr>
<td>15</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>14252</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>14282.89</td>
</tr>
<tr>
<td>16</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>14243</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>13245.95</td>
</tr>
<tr>
<td>17</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>13703</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>13749.98</td>
</tr>
<tr>
<td>18</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>13854</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>13951.09</td>
</tr>
<tr>
<td>19</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>15421</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>15431.74</td>
</tr>
<tr>
<td>20</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>14409</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>15147</td>
</tr>
<tr>
<td>21</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>13771</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>13954.56</td>
</tr>
<tr>
<td>22</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>14529</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>14532.3</td>
</tr>
<tr>
<td>23</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>13095</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>13642.7</td>
</tr>
<tr>
<td>24</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>12403</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>12810.09</td>
</tr>
<tr>
<td>25</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>14051</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>14653.98</td>
</tr>
<tr>
<td>27</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>12792</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>13264.38</td>
</tr>
<tr>
<td>28</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>12711</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>13151.19</td>
</tr>
<tr>
<td>29</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>12326</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>12625.78</td>
</tr>
<tr>
<td>30</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>13346</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>13777.85</td>
</tr>
<tr>
<td>31</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>13280</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>13264.81</td>
</tr>
<tr>
<td>32</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>12807</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>13113.18</td>
</tr>
<tr>
<td>33</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>12741</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>18084.04</td>
</tr>
<tr>
<td>34</td>
<td>5110</td>
<td>14:03:11:11:11:14</td>
<td>15921</td>
<td>334.5903245</td>
<td>OrderCross</td>
<td>19603.36</td>
</tr>
</tbody>
</table>
RunCollection Tabular View

• Sort columns
 – click on column header to sort column
 – Ctrl-click on column header to sort multiple columns

• Show or hide columns
 – right-click on table to open dialog to show or hide columns

• Compute statistical values
 – select multiple numerical values to see count, sum, minimum, maximum, average and standard deviation

• Select, copy and paste into other applications
RunCollection BubbleChart
RunCollection BubbleChart

- Choose values to plot
 - choose which values to show on the x-axis, the y-axis and as bubble size
 - possible values are all parameter settings and results

- Add jitter
 - add jitter to separate overlapping bubbles

- Zoom in and out
 - click on Zoom and click and drag in the chart area to zoom in
 - double click on the chart area background or on the circle buttons beside the scroll bars to zoom out

- Color bubbles
 - click on Select, choose a color and click and drag in the chart area to select and color bubbles
 - apply coloring automatically by clicking on the axis coloring buttons

- Show runs
 - double click on a bubble to open its run

- Export image
 - right-click to open context menu to copy or save image
 - save image as pixel (BMP, JPG, PNG, GIF, TIF) or vector graphics (EMF)

- Show box plots
 - right-click to open context menu to show box plots view
RunCollection BoxPlots
RunCollection BoxPlots

• Choose values to plot
 – choose which values to show on the x-axis and y-axis
 – possible values are all parameter settings and results

• Zoom in and out
 – click on Zoom and click and drag in the chart area to zoom in
 – double click on the chart area background or on the circle buttons beside the scroll bars to zoom out

• Show or hide statistical values
 – click on the lower left button to show or hide statistical values

• Export image
 – right-click to open context menu to copy or save image
 – save image as pixel (BMP, JPG, PNG, GIF, TIF) or vector graphics (EMF)
Filter Runs
Multi-core CPUs and Parallelization

• Parallel execution of optimizers in experiments
 – optimizers in an experiment are executed sequentially from top to bottom per default
 – experiments support parallel execution of their optimizers
 – select a not yet executed optimizer and start it manually to utilize another core
 – execution of one of the next optimizers is started automatically after an optimizer is finished

• Parallel execution of algorithms
 – HeuristicLab provides special operators for parallelization
 – engines decide how to execute parallel operations
 – sequential engine executes everything sequentially
 – parallel engine executes parallel operations on multiple cores
 – Hive engine (under development) executes parallel operations on multiple computers
 – all implemented algorithms support parallel solution evaluation
Parallel Execution of Experiments

1. start experiment
2. start other optimizers
Parallel Execution of Algorithms
Analyzers

• Special operators for analysis purposes
 – are executed after each iteration
 – serve as general purpose extension points of algorithms
 – can be selected and parameterized in the algorithm
 – perform algorithm-specific and/or problem-specific tasks
 – some analyzers are quite costly regarding runtime and memory
 – implementing and adding custom analyzers is easy

• Examples
 – TSPAlleleFrequencyAnalyzer
 – TSPPopulationDiversityAnalyzer
 – SuccessfulOffspringAnalyzer
 – SymbolicDataAnalysisVariableFrequencyAnalyzer
 – SymbolicRegressionSingleObjectiveTrainingBestSolutionAnalyzer
 – ...

HeuristicLab Tutorial http://dev.heuristiclab.com
Analyzers
TSPAlleleFrequencyAnalyzer
TSPPopulationDiversityAnalyzer
Building User-Defined Algorithms

- **Operator graphs**
 - algorithms are represented as operator graphs
 - operator graphs of user-defined algorithms can be changed
 - algorithms can be defined in the graphical algorithm designer
 - use the menu to convert a standard algorithm into a user-defined algorithm

- **Operators sidebar**
 - drag & drop operators into an operator graph

- **Programmable operators**
 - add programmable operators in order to implement custom logic in an algorithm
 - no additional development environment needed

- **Debug algorithms**
 - use the debug engine to obtain detailed information during algorithm execution
Building User-Defined Algorithms
Building User-Defined Algorithms
Programmable Operators
Debugging Algorithms
Agenda

• Objectives of the Tutorial
• Introduction
• Where to get HeuristicLab?
• Plugin Infrastructure
• Graphical User Interface
• Available Algorithms & Problems

• Demonstration Part: Working with HeuristicLab

• Some Additional Features
• Planned Features
• Team
• Suggested Readings
• Bibliography
• Questions & Answers
Some Additional Features

- **HeuristicLab Hive**
 - parallel and distributed execution of algorithms and experiments on many computers in a network

- **Optimization Knowledge Base (OKB)**
 - database to store algorithms, problems, parameters and results
 - open to the public
 - open for other frameworks
 - analyze and store characteristics of problem instances and problem classes

- **External solution evaluation and simulation-based optimization**
 - interface to couple HeuristicLab with other applications (MatLab, AnyLogic, ...)
 - supports different protocols (command line parameters, TCP, ...)

- **Parameter grid tests and meta-optimization**
 - automatically create experiments to test large ranges of parameters
 - apply heuristic optimization algorithms to find optimal parameter settings for heuristic optimization algorithms
Planned Features

• Algorithms & Problems
 – steady-state genetic algorithm
 – unified tabu search for vehicle routing
 – scatter search
 – …

• Cloud Computing
 – port HeuristicLab Hive to Windows Azure

• Linux
 – port HeuristicLab to run on Mono and Linux machines

• Have a look at the HeuristicLab roadmap
 – http://dev.heuristiclab.com/trac/hl/core/roadmap

• Any other ideas, requests or recommendations?
 – join our HeuristicLab Google group heuristiclab@googlegroups.com or
 – write an e-mail to support@heuristiclab.com
HeuristicLab Team

Heuristic and Evolutionary Algorithms Laboratory (HEAL)
School of Informatics, Communications and Media
University of Applied Sciences Upper Austria

Softwarepark 11
A-4232 Hagenberg
AUSTRIA

WWW: http://heal.heuristiclab.com
Suggested Readings

• S. Wagner, M. Affenzeller
 HeuristicLab: A generic and extensible optimization environment
 Adaptive and Natural Computing Algorithms, pp. 538-541
 Springer, 2005

• S. Wagner, S. Winkler, R. Braune, G. Kronberger, A. Beham, M. Affenzeller
 Benefits of plugin-based heuristic optimization software systems
 Springer, 2007

• S. Wagner, G. Kronberger, A. Beham, S. Winkler, M. Affenzeller
 Modeling of heuristic optimization algorithms
 Proceedings of the 20th European Modeling and Simulation Symposium, pp. 106-111
 DIPTEM University of Genova, 2008

• S. Wagner, G. Kronberger, A. Beham, S. Winkler, M. Affenzeller
 Model driven rapid prototyping of heuristic optimization algorithms
 Springer, 2009

• S. Wagner
 Heuristic optimization software systems - Modeling of heuristic optimization algorithms in the HeuristicLab software environment

• S. Wagner, A. Beham, G. Kronberger, M. Kommenda, E. Pitzer, M. Kofler, S. Vonolfen, S. Winkler, V. Dorfer, M. Affenzeller
 HeuristicLab 3.3: A unified approach to metaheuristic optimization
 Actas del séptimo congreso español sobre Metaheuristicas, Algoritmos Evolutivos y Bioinspirados (MAEB'2010), 2010

• Detailed list of all publications of the HEAL research group: http://research.fh-ooe.at/de/orgunit/detail/356#showpublications
Questions & Answers

http://dev.heuristiclab.com

heuristiclab@googlegroups.com