
GraphML Primer

GraphML Primer

Editors:
Ulrik Brandes ulrik.brandes@uni-konstanz.de,
Markus Eiglsperger eiglsper@web.de,
Jürgen Lerner lerner@inf.uni-konstanz.de

Abstract

GraphML Primer is a non-normative document intended to provide an easily
readable description of the GraphML facilities, and is oriented towards quickly
understanding how to create GraphML documents. This primer describes the
language features through examples which are complemented by references to
normative texts.

Table of contents

1 Introduction
2 Basic Concepts
2.1 A Simple Graph
2.2 Header
2.3 Graph Tolology
2.3.1 Declaring a Graph
2.3.2 Declaring a Node
2.3.3 Declaring an Edge
2.4 Attributes
2.4.1 GraphML-Attributes Example
2.4.2 Declaring GraphML-Attributes
2.4.4 Defining GraphML-Attribute Values
2.5 Parse Info
3 Advanced Concepts I: Nested Graphs, Hyperedges & Ports
3.1 Nested Graphs

http://graphml.graphdrawing.org/primer/graphml-primer.html (1 of 25)10/04/2005 8:48:59

mailto:ulrik.brandes@uni-konstanz.de
mailto:eiglsper@web.de
mailto:lerner@inf.uni-konstanz.de

GraphML Primer

3.2 Hyperedges
3.3 Ports
4 Advanced Concepts II: Extending GraphML
4.1 Adding XML Attributes to GraphML Elements
4.2 Adding Complex Types

1 Introduction

This document, GraphML Primer, provides an description of GraphML, and
should be used alongside the formal descriptions of the language contained in
the GraphML specification. The intended audience of this document includes
application developers whose programs read and write GraphML files, and users
who want to communicate with programs using GraphML import/export. The text
assumes that you have a basic understanding of XML 1.0 and XML-
Namespaces. Basic knowledge of XML Schema is also assumed for some parts
of this document. Each major section of the primer introduces new features of
the language, and describes those features in the context of concrete examples.

Section 2 covers the basic mechanisms of GraphML. It describes how to declare
a simple graph by defining its nodes and edges and how to add simple user data
to the graph.

Section 3 describes advanced graph models which include nested graphs,
hyperedges, and ports.

Section 4 describes mechanisms for extending GraphML to store complex
application specific data.

The primer is a non-normative document, which means that it does not provide a
definitive specification of the GraphML language. The examples and other
explanatory material in this document are provided to help you understand
GraphML, but they may not always provide definitive answers. In such cases,
you will need to refer to the GraphML specification, and to help you do this, we
provide many links pointing to the relevant parts of the specification.

2 Basic Concepts

The purpose of a GraphML document is to define a graph. Let us start by
considering the graph shown in the figure below. It contains 11 nodes and 12

http://graphml.graphdrawing.org/primer/graphml-primer.html (2 of 25)10/04/2005 8:48:59

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502

GraphML Primer

edges.

A simple graph

2.1 A Simple Graph

The graph is contained in the file simple.graphml:

A simple graph

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:schemaLocation="http://graphml.graphdrawing.org/
xmlns
 http://graphml.graphdrawing.org/xmlns/1.0/graphml.
xsd">
 <graph id="G" edgedefault="undirected">
 <node id="n0"/>
 <node id="n1"/>
 <node id="n2"/>
 <node id="n3"/>

http://graphml.graphdrawing.org/primer/graphml-primer.html (3 of 25)10/04/2005 8:48:59

http://graphml.graphdrawing.org/primer/simple.graphml

GraphML Primer

 <node id="n4"/>
 <node id="n5"/>
 <node id="n6"/>
 <node id="n7"/>
 <node id="n8"/>
 <node id="n9"/>
 <node id="n10"/>
 <edge source="n0" target="n2"/>
 <edge source="n1" target="n2"/>
 <edge source="n2" target="n3"/>
 <edge source="n3" target="n5"/>
 <edge source="n3" target="n4"/>
 <edge source="n4" target="n6"/>
 <edge source="n6" target="n5"/>
 <edge source="n5" target="n7"/>
 <edge source="n6" target="n8"/>
 <edge source="n8" target="n7"/>
 <edge source="n8" target="n9"/>
 <edge source="n8" target="n10"/>
 </graph>
</graphml>

The GraphML document consists of a graphml element and a variety of
subelements: graph, node, edge. In the remainder of this section we will
discuss these elements in detail and show how they define a graph.

2.2 The Header

In this section we discuss the parts of the document which are common to all
GraphML documents, basically the graphml element.

A Header with XML Schema reference

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:schemaLocation="http://graphml.graphdrawing.org/
xmlns
 http://graphml.graphdrawing.org/xmlns/1.0/graphml.
xsd">

http://graphml.graphdrawing.org/primer/graphml-primer.html (4 of 25)10/04/2005 8:48:59

GraphML Primer

 ...

</graphml>

The first line of the document is an XML process instruction which defines that
the document adheres to the XML 1.0 standard and that the encoding of the
document is UTF-8, the standard encoding for XML documents. Of course other
encodings can be chosen for GraphML documents.

The second line contains the root-element element of a GraphML document: the
graphml element. The graphml element, like all other GraphML elements,
belongs to the namespace http://graphml.graphdrawing.org/xmlns.
For this reason we define this namespace as the default namespace in the
document by adding the XML Attribute xmlns="http://graphml.
graphdrawing.org/xmlns" to it. The two other XML Attributes are needed to
specify the XML Schema for this document. In our example we use the standard
schema for GraphML documents located on the graphdrawing.org server.
The first attribute, xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance", defines xsi as the XML Schema namespace. The second
attribute, xsi:schemaLocation="http://graphml.graphdrawing.org/
xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.
xsd" , defines the XML Schema location for all elements in the GraphML
namespace.

The XML Schema reference is not required but it provides means to validate the
document and is therefore strongly recommended.

A Header without XML Schema reference

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns">

 ...

</graphml>

2.3 The Graph

A graph is, not surprisingly, denoted by a graph element. Nested inside a
graph element are the declarations of nodes and edges. A node is declared
with a node element, and an egde with an edge element.

http://graphml.graphdrawing.org/primer/graphml-primer.html (5 of 25)10/04/2005 8:48:59

GraphML Primer

The definition of the graph

 <graph id="G" edgedefault="directed">
 <node id="n0"/>
 <node id="n1"/>
 ...
 <node id="n10"/>
 <edge source="n0" target="n2"/>
 <edge source="n1" target="n2"/>
 ...
 <edge source="n8" target="n10"/>
 </graph>

In GraphML there is no order defined for the appearance of node and edge
elements. Therefore the following example is a perfectly valid GraphML
fragment:

The definition of the graph

 <graph id="G" edgedefault="directed">
 <node id="n0"/>
 <edge source="n0" target="n2"/>
 <node id="n1"/>
 <node id="n2"/>
 ...
 </graph>

2.3.1 Declaring a Graph

Graphs in GraphML are mixed, in other words, they can contain directed and
undirected edges at the same time. If no direction is specified when an edge is
declared, the default direction is applied to the edge. The default direction is
declared as the XML Attribute edgedefault of the graph element. The two
possible value for this XML Attribute are directed and undirected. Note that
the default direction must be specified.

Optionally an identifier for the graph can be specified with the XML Attribute id.
The identifier is used, when it is necessary to reference the graph.

2.3.2 Declaring a Node

http://graphml.graphdrawing.org/primer/graphml-primer.html (6 of 25)10/04/2005 8:48:59

GraphML Primer

Nodes in the graph are declared by the node element. Each node has an
identifier, which must be unique within the entire document, i.e., in a document
there must be no two nodes with the same identifier. The identifier of a node is
defined by the XML-Attribute id.

2.3.3 Declaring an Edge

Edges in the graph are declared by the edge element. Each edge must define
its two endpoints with the XML-Attributes source and target. If the value of
the source, resp. target, must be the identifier of a node in the same
document.

Edges with only one endpoint, also called loops, selfloops, or reflexive edges,
are defined by having the same value for source and target.

The optional XML-Attribute directed declares if the edge is directed or
undirected. The value true declares a directed edge, the value false an
undirected edge. If the direction is not explicitely defined, the default direction is
applied to this edge as defined in the enclosing graph.

Optionally an identifier for the edge can be specified with the XML Attribute id.
The id XML-Attribute is used, when it is necessary to reference the edge.

An edge with all XML-Attributes defined

 ...
 <edge id="e1" directed="true" source="n0"
target="n2"/>
 ...

2.4 GraphML-Attributes

In the previous section we discussed how to describe the topology of a graph in
GraphML. While pure topological information may be sufficient for some
appications of GraphML, for the most time additional information is needed. With
the help of the extension GraphML-Attributes one can specify additional
information of simple type for the elements of the graph. Simple type means that
the information is restricted to scalar values, e.g. numerical values and strings.

http://graphml.graphdrawing.org/primer/graphml-primer.html (7 of 25)10/04/2005 8:48:59

GraphML Primer

If you want to add structured content to graph elements you should use the key/
data extension mechanism of GraphML. For a detailed description of this
mechanism see Chapter 4. GraphML-Attributes themselfes are specialized data/
key extensions.

GraphML-Attributes must not be confounded with XML-Attributes which are a
different concept.

2.4.1 GraphML-Attributes Example

In this section a graph with colored nodes and edge weights will be our running
example.

A graph with colored nodes and edge weights.

We will use GraphML-Attributes to store the extra data on the nodes and edges.
The file attributes.graphml shows the result:

Example of a GraphML Document with GraphML-Attributes

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:schemaLocation="http://graphml.graphdrawing.
org/xmlns
 http://graphml.graphdrawing.org/xmlns/1.0/
graphml.xsd">

http://graphml.graphdrawing.org/primer/graphml-primer.html (8 of 25)10/04/2005 8:48:59

http://graphml.graphdrawing.org/primer/attributes.graphml

GraphML Primer

 <key id="d0" for="node" attr.name="color" attr.
type="string">
 <default>yellow</default>
 </key>
 <key id="d1" for="edge" attr.name="weight" attr.
type="double"/>
 <graph id="G" edgedefault="undirected">
 <node id="n0">
 <data key="d0">green</data>
 </node>
 <node id="n1"/>
 <node id="n2">
 <data key="d0">blue</data>
 </node>
 <node id="n3">
 <data key="d0">red</data>
 </node>
 <node id="n4"/>
 <node id="n5">
 <data key="d0">turquoise</data>
 </node>
 <edge id="e0" source="n0" target="n2">
 <data key="d1">1.0</data>
 </edge>
 <edge id="e1" source="n0" target="n1">
 <data key="d1">1.0</data>
 </edge>
 <edge id="e2" source="n1" target="n3">
 <data key="d1">2.0</data>
 </edge>
 <edge id="e3" source="n3" target="n2"/>
 <edge id="e4" source="n2" target="n4"/>
 <edge id="e5" source="n3" target="n5"/>
 <edge id="e6" source="n5" target="n4">
 <data key="d1">1.1</data>
 </edge>
 </graph>
</graphml>

2.4.2 Declaring GraphML-Attributes

A GraphML-Attribute is defined by a key element which specifies the identifier,

http://graphml.graphdrawing.org/primer/graphml-primer.html (9 of 25)10/04/2005 8:48:59

GraphML Primer

name, type and domain of the attribute.

The identifier is specified by the XML-Attribute id and is used to refer to the
GraphML-Attribute inside the document.

The name of the GraphML-Attribute is defined by the XML-Attribute attr.name
and must be unique among all GraphML-Attributes declared in the document.
The purpose of the name is that applications can identify the meaning of the
attribute. Note that the name of the GraphML-Attribute is not used inside the
document, the identifier is used for this purpose.

The type of the GraphML-Attribute can be either boolean, int, long, float,
double, or string. These types are defined like the corresponding types in the
Java(TM)-Programming language.

The domain of the GraphML-Attribute specifies for which graph elements the
GraphML-Attribute is declared. Possible values include graph, node, edge, and
all.

Declaration of a GraphML Attribute

 ...
 <key id="d1" for="edge" attr.name="weight" attr.
type="double"/>
 ...

It is possible to define a default value for a GraphML-Attribute. The text content
of the default element defines this default value.

Declaration of a GraphML Attribute with Default Value

 ...
 <key id="d0" for="node" attr.name="color" attr.
type="string">
 <default>yellow</default>
 </key>
 ...

http://graphml.graphdrawing.org/primer/graphml-primer.html (10 of 25)10/04/2005 8:48:59

GraphML Primer

2.4.3 Defining GraphML-Attribute Values

The value of a GraphML-Attribute for a graph element is defined by a data
element nested inside the element for the graph element. The data element has
an XML-Attribute key, which refers to the identifier of the GraphML-Attribute.
The value of the GraphML-Attribute is the text content of the data element. This
value must be of the type declared in the corresponding key definition.

GraphML-Attribute Values

 ...
 <key id="d0" for="node" attr.name="color" attr.
type="string">
 <default>yellow</default>
 </key>
 <key id="d1" for="edge" attr.name="weight" attr.
type="double"/>
 <graph id="G" edgedefault="undirected">
 <node id="n0">
 <data key="d0">green</data>
 </node>
 <node id="n1"/>
 ...
 <edge id="e0" source="n0" target="n2">
 <data key="d1">1.0</data>
 </edge>
 <edge id="e1" source="n0" target="n1">
 <data key="d1">1.0</data>
 </edge>
 <edge id="e2" source="n1" target="n3">
 <data key="d1">2.0</data>
 </edge>
 <edge id="e3" source="n3" target="n2"/>
 ...
 </graph>
 ...

There can be graph elements for which a GraphML-Attribute is defined but no
value is declared by a corresponding data element. If a default value is defined
for this GraphML-Attribute, then this default value is applied to the graph
element. In the above example no value is defined for the node with identifier n1
and the GraphML-Attribute with name color. Therefore this GraphML-Attribute

http://graphml.graphdrawing.org/primer/graphml-primer.html (11 of 25)10/04/2005 8:48:59

GraphML Primer

has the default value, yellow for this node. If no default value is specified, as
for the GraphML-Attribute weight in the above example, the value of the
GraphML-Attribute is undefined for the graph element. In the above example the
value is undefined of the GraphML-Attribute weight for the edge with identifier
e3.

2.5 Parse Info

To make it possible to implement optimized parsers for GraphML documents
meta-data can be attached as XML-Attributes to some GraphML elements. All
XML-Attributes denoting meta-data are prefixed with parse. There are two kinds
of meta-data: information about the number of elements and information how
specific data is encoded in the document.

For the first kind, information about the number of elements, the following XML-
Attributes for the graph element are defined: The XML-Attribute parse.nodes
denotes the number of nodes in the graph, the XML-Attribute parse.edgesthe
number of edges. The XML-Attribute parse.maxindegree denotes the
maximum indegree of the nodes in the graph and the XML-Attribute parse.
maxoutdegree the maximum outdegree. For the node element the XML-
Attribute parse.indegree denotes the indegree of the node and the XML-
Attribute parse.outdegree the outdegree.

For the second kind, information about element encoding, the following XML-
Attributes for the graph element are defined: If the XML-Attribute parse.
nodeids has the value canonical, all nodes have identifiers following the
pattern nX, where X denotes the number of occurences of the node element
before the current element. Otherwise the value of the XML-Attribute is free.
The same holds for edges for which the corresponding XML-Attribute parse.
edgeids is defined, with the only difference that the identifiers of the edges
follow the pattern eX. The XML-Attribute parse.order denotes the order in
which node and edge elements occur in the document. For the value
nodesfirst no node element is allowed to occur after the first occurence of an
edge element. For the value adjacencylist, the declariation of a node is
followed the declaration of its adjacent edges. For the value free no order is
imposed.

The following example demonstrates the parse info meta-data on our running
example:

A graph with additional parse info attributes.

http://graphml.graphdrawing.org/primer/graphml-primer.html (12 of 25)10/04/2005 8:48:59

GraphML Primer

<?xml version="1.0" encoding="UTF-8"?>
<!-- This file was written by the JAVA GraphML
Library.-->
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:schemaLocation="http://graphml.
graphdrawing.org/xmlns
 http://graphml.
graphdrawing.org/xmlns/1.0/graphml.xsd">
 <graph id="G" edgedefault="directed"
 parse.nodes="11" parse.edges="12"
 parse.maxindegree="2" parse.maxoutdegree="3"
 parse.nodeids="canonical" parse.
edgeids="free"
 parse.order="nodesfirst">
 <node id="n0" parse.indegree="0" parse.
outdegree="1"/>
 <node id="n1" parse.indegree="0" parse.
outdegree="1"/>
 <node id="n2" parse.indegree="2" parse.
outdegree="1"/>
 <node id="n3" parse.indegree="1" parse.
outdegree="2"/>
 <node id="n4" parse.indegree="1" parse.
outdegree="1"/>
 <node id="n5" parse.indegree="2" parse.
outdegree="1"/>
 <node id="n6" parse.indegree="1" parse.
outdegree="2"/>
 <node id="n7" parse.indegree="2" parse.
outdegree="0"/>
 <node id="n8" parse.indegree="1" parse.
outdegree="3"/>
 <node id="n9" parse.indegree="1" parse.
outdegree="0"/>
 <node id="n10" parse.indegree="1" parse.
outdegree="0"/>
 <edge id="edge0001" source="n0" target="n2"/>
 <edge id="edge0002" source="n1" target="n2"/>
 <edge id="edge0003" source="n2" target="n3"/>
 <edge id="edge0004" source="n3" target="n5"/>
 <edge id="edge0005" source="n3" target="n4"/>

http://graphml.graphdrawing.org/primer/graphml-primer.html (13 of 25)10/04/2005 8:48:59

GraphML Primer

 <edge id="edge0006" source="n4" target="n6"/>
 <edge id="edge0007" source="n6" target="n5"/>
 <edge id="edge0008" source="n5" target="n7"/>
 <edge id="edge0009" source="n6" target="n8"/>
 <edge id="edge0010" source="n8" target="n7"/>
 <edge id="edge0011" source="n8" target="n9"/>
 <edge id="edge0012" source="n8" target="n10"/>
 </graph>
</graphml>

3. Advanced Concepts I: Nested Graphs, Hyperedges
& Ports

In some applications the graph model described in the previous section is too
restrictive and does not model adequatly the application data.

In this section we discuss advanced graph models which can model a nesting
hierarchy, hyperedges and ports.

3.1 Nested Graphs

GraphML supports nested graphs, i.e., graphs in which the nodes are
hierarchically ordered. The hierarchy is expressed by the structure of the
GraphML document. A node in a GraphML document may have a graph
element which itself contains the nodes which are in the hierarchy below this
node. Here is an example for a nested graph and the corresponding GraphML
document. Note that in the drawing of the graph the hierarchy is expressed by
containment, i.e., the a node a is below a node b in the hierarchy if and only if
the graphical representation of a is entirely inside the graphical representation of
b.

A nested graph.

http://graphml.graphdrawing.org/primer/graphml-primer.html (14 of 25)10/04/2005 8:48:59

GraphML Primer

The file nested.graphml shows the corresponding GraphML document:

GraphML Document with Nested Graphs

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/
xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.
xsd">
 <graph id="G" edgedefault="undirected">
 <node id="n0"/>
 <node id="n1"/>
 <node id="n2"/>
 <node id="n3"/>
 <node id="n4"/>
 <node id="n5">
 <graph id="n5:" edgedefault="undirected">
 <node id="n5::n0"/>
 <node id="n5::n1"/>

http://graphml.graphdrawing.org/primer/graphml-primer.html (15 of 25)10/04/2005 8:48:59

http://graphml.graphdrawing.org/primer/nested.graphml

GraphML Primer

 <node id="n5::n2"/>
 <edge id="e0" source="n5::n0" target="n5::n2"/
>
 <edge id="e1" source="n5::n1" target="n5::n2"/
>
 </graph>
 </node>
 <node id="n6">
 <graph id="n6:" edgedefault="undirected">
 <node id="n6::n0">
 <graph id="n6::n0:"
edgedefault="undirected">
 <node id="n6::n0::n0"/>
 </graph>
 </node>
 <node id="n6::n1"/>
 <node id="n6::n2"/>
 <edge id="e10" source="n6::n1" target="n6::
n0::n0"/>
 <edge id="e11" source="n6::n1" target="n6::
n2"/>
 </graph>
 </node>
 <edge id="e2" source="n5::n2" target="n0"/>
 <edge id="e3" source="n0" target="n2"/>
 <edge id="e4" source="n0" target="n1"/>
 <edge id="e5" source="n1" target="n3"/>
 <edge id="e6" source="n3" target="n2"/>
 <edge id="e7" source="n2" target="n4"/>
 <edge id="e8" source="n3" target="n6::n1"/>
 <edge id="e9" source="n6::n1" target="n4"/>
 </graph>
</graphml>

The edges between two nodes in a nested graph have to be declared in a graph,
which is an ancestor of both nodes in the hierarchy. Note that this is true for our
example. Declaring the edge between node n6::n1 and node n4::n0::n0
inside graph n6::n0 would be wrong while declaring it in graph G would be
correct. A good policy is to place the edges at the least common ancestor of the
nodes in the hierarchy, or at the top level.

For applications which can not handle nested graphs the fall-back behaviour is

http://graphml.graphdrawing.org/primer/graphml-primer.html (16 of 25)10/04/2005 8:48:59

GraphML Primer

to ignore nodes which are not contained in the top-level graph and to ignore
edges which have do not have both endpoints in the top-level graph.

3.2 Hyperedges

Hyperedges are a generalization of edges in the sense that they do not only
relate two endpoints to each other, they express a relation between an arbitrary
number of enpoints. Hyperedges are declared by a hyperedge element in
GraphML. For each enpoint of the hyperedge, this hyperedge element contains
an endpoint element. The endpoint element must have an XML-Attribute
node, which contains the identifier of a node in the document. The following
example contains two hyperedges and two edges. The hyperedges are
illustrated by joining arcs, the edges by straight lines. Note that edges can be
either specified by an edge element or by a hyperedge element containing two
endpoint elements.

A graph with hyperedges.

The file hyper.graphml shows the corresponding GraphML document:

GraphML Document with Hyperedges

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/
xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.
xsd">
 <graph id="G" edgedefault="undirected">

http://graphml.graphdrawing.org/primer/graphml-primer.html (17 of 25)10/04/2005 8:48:59

http://graphml.graphdrawing.org/primer/hyper.graphml

GraphML Primer

 <node id="n0"/>
 <node id="n1"/>
 <node id="n2"/>
 <node id="n3"/>
 <node id="n4"/>
 <node id="n5"/>
 <node id="n6"/>
 <hyperedge>
 <endpoint node="n0"/>
 <endpoint node="n1"/>
 <endpoint node="n2"/>
 </hyperedge>
 <hyperedge>
 <endpoint node="n3"/>
 <endpoint node="n4"/>
 <endpoint node="n5"/>
 <endpoint node="n6"/>
 </hyperedge>
 <hyperedge>
 <endpoint node="n1"/>
 <endpoint node="n3"/>
 </hyperedge>
 <edge source="n0" target="n4"/>
 </graph>
</graphml>

Like edges, hyperedges and enpoints may have an XML-Attribute id, which
defines a unique identifier for the corresponding element.

3.3 Ports

A node may specify different logical locations for edges and hyperedges to
connect. The logical locations are called "ports". As an analogy, thinck of the
graph as a mother board, the nodes as integrated circuits and the edges as
connecting wires. Then the pins on the integrated circuits correspond to portsof
a node.

The ports of a node are declared by port elements as children of the
corresponding node elements. Note that port elements may be nested, i.e., they
may contain port elements themselves. Each port element must have an XML-
Attribute name, which is an identifier for this port. The edge element has optional
XML-Attributes sourceport and targetport with which an edge may specify

http://graphml.graphdrawing.org/primer/graphml-primer.html (18 of 25)10/04/2005 8:48:59

GraphML Primer

the port on the source, resp. target, node. Correspondingly, the endpoint
element has an optional XML-Attribute port.

The document port.graphml is an example for a document with ports:

GraphML Document with Ports

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/
xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.
xsd">
 <graph id="G" edgedefault="directed">
 <node id="n0">
 <port name="North"/>
 <port name="South"/>
 <port name="East"/>
 <port name="West"/>
 </node>
 <node id="n1">
 <port name="North"/>
 <port name="South"/>
 <port name="East"/>
 <port name="West"/>
 </node>
 <node id="n2">
 <port name="NorthWest"/>
 <port name="SouthEast"/>
 </node>
 <node id="n3">
 <port name="NorthEast"/>
 <port name="SouthWest"/>
 </node>
 <edge source="n0" target="n3" sourceport="North"
targetport="NorthEast"/>
 <hyperedge>
 <endpoint node="n0" port="North"/>
 <endpoint node="n1" port="East"/>
 <endpoint node="n2" port="SouthEast"/>
 </hyperedge>
 </graph>
</graphml>

http://graphml.graphdrawing.org/primer/graphml-primer.html (19 of 25)10/04/2005 8:48:59

http://graphml.graphdrawing.org/primer/port.graphml

GraphML Primer

4. Advanced Concepts II: Extending
GraphML

GraphML is designed to be easily extensible. With GraphML the topology of a
graph and simple attributes of graph elements can be serialized. To store more
complex application data one has to extend GraphML. In this section we will
discuss the different possibilities to extend GraphML.

Extensions of GraphML should be defined by an XML Schema. The Schema
which defines the extension can be derived form the GraphML Schema
documents by using a standard mechanism similar to the to one used by
XHTML.

4.1 Adding XML Attributes to GraphML Elements

In most cases, additional information can (and should) be attached to GraphML
elements by usage of GraphML-Attributes, this assures readability for other
GraphML parsers. However, sometimes it might be more convenient to use XML
attributes. Suppose you have a parser which knows the XLink href attribute
and interprets it correctly as a URL. Suppose further you want to store a graph,
whose nodes model WWW pages, in GraphML. To associate a node to the page
it models you write the page's URL in an xlink:href attribute within the node-
tag:

A node element pointing to a URL

 ...
 <node id="n0" xlink:href="http://graphml.graphdrawing.
org"/>
 ...

To add XML attributes to GraphML elements one has to extend GraphML. This
extension can be defined by an XML Schema. The document graphml+xlink.xsd
shows how the href attribute is added to node:

Extending GraphML: Attributes

<?xml version="1.0" encoding="UTF-8"?>

http://graphml.graphdrawing.org/primer/graphml-primer.html (20 of 25)10/04/2005 8:48:59

http://www.w3.org/XML/Linking
http://graphml.graphdrawing.org/primer/graphml+xlink.xsd

GraphML Primer

<xs:schema
 targetNamespace="http://graphml.graphdrawing.org/
xmlns"
 xmlns="http://graphml.graphdrawing.org/xmlns"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
>

<xs:import namespace="http://www.w3.org/1999/xlink"
 schemaLocation="xlink.xsd"/>

<xs:redefine
 schemaLocation="http://graphml.graphdrawing.org/
xmlns/1.0/graphml.xsd">
 <xs:attributeGroup name="node.extra.attrib">
 <xs:attributeGroup ref="node.extra.attrib"/>
 <xs:attribute ref="xlink:href" use="optional"/>
 </xs:attributeGroup>
</xs:redefine>

</xs:schema>

The parts in the above document have the following function: The document
graphml+xlink.xsd has a schema element as its root element.
targetNamespace="http://graphml.graphdrawing.org/xmlns" says
that the language defined by this document is GraphML. The next three lines
specify the default namespace and the namespace prefixes for XLink and
XMLSchema. The attributes elementFormDefault and
attributeFormDefault are of no importance for this example.
<xs:import namespace="http://www.w3.org/1999/xlink"
schemaLocation="xlink.xsd"/> gives access to the XLink namespace,
located at the file xlink.xsd.
<xs:redefine schemaLocation="http://graphml.graphdrawing.
org/xmlns/1.0/graphml.xsd"> specifies the file, (part of) which is being
redefined. The attribute group node.extra.attrib is included in the attribute-
list of node. After redefinition, this attribute group has its old content plus one
more attribute, namely xlink:href, which is optional.

Besides node.extra.attrib, there are corresponding attribute groups for all
major GraphML elements.

http://graphml.graphdrawing.org/primer/graphml-primer.html (21 of 25)10/04/2005 8:48:59

http://graphml.graphdrawing.org/primer/graphml+xlink.xsd

GraphML Primer

The document attributes.ext.graphml is an example for a document which is
valid with respect to the schema graphml+xlink.xsd.

GraphML Document with additional XML attributes

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:schemaLocation="http://graphml.
graphdrawing.org/xmlns
 graphml+xlink.xsd">
 <graph edgedefault="directed">
 <node id="n0" xlink:href="http://graphml.
graphdrawing.org"/>
 <node id="n1" />
 <edge source="n0" target="n1"/>
 </graph>
</graphml>

4.2 Adding Complex Types

Structured content can be added within the data element. For example a user
wants to store images for nodes, written in SVG.

A node element and its graphical representation

 ...
 xmlns:svg="http://www.w3.org/2000/svg"
 ...
 <node id="n0" >
 <data key="k0">
 <svg:svg width="4cm" height="8cm" version="1.1">
 <svg:ellipse cx="2cm" cy="4cm" rx="2cm"
ry="1cm" />
 </svg:svg>
 </data>
 </node>
 ...

http://graphml.graphdrawing.org/primer/graphml-primer.html (22 of 25)10/04/2005 8:48:59

http://graphml.graphdrawing.org/primer/attributes.ext.graphml
http://graphml.graphdrawing.org/primer/graphml+xlink.xsd
http://www.w3.org/Graphics/SVG

GraphML Primer

To add structured data to GraphML elements one has to extend GraphML. This
extension can be defined by an XML Schema. The document graphml+svg.xsd
shows how SVG elements are added to the content of data:

Extending GraphML: Structured Data

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 targetNamespace="http://graphml.graphdrawing.org/
xmlns"
 xmlns="http://graphml.graphdrawing.org/xmlns"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
>

<xs:import namespace="http://www.w3.org/2000/svg"
 schemaLocation="svg.xsd"/>

<xs:redefine
 schemaLocation="http://graphml.graphdrawing.org/
xmlns/1.0/graphml.xsd">
 <xs:complexType name="data-extension.type">
 <xs:complexContent>
 <xs:extension base="data-extension.type">
 <xs:sequence>
 <xs:element ref="svg:svg"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:redefine>

</xs:schema>

The above Schema is similar to the example in Adding Attributes: First the
necessary namespace declarations are made. Then the SVG namespace is
imported. Finally the complex type data-extension.type, which is the base-
type for the content of the data element, is extended by the SVG element svg.

http://graphml.graphdrawing.org/primer/graphml-primer.html (23 of 25)10/04/2005 8:48:59

http://graphml.graphdrawing.org/primer/graphml+svg.xsd
http://www.w3.org/Graphics/SVG

GraphML Primer

With the Schema in graphml+svg.xsd, the GraphML Document svg.graphml can
be validated:

GraphML Document including SVG data

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:schemaLocation="http://graphml.
graphdrawing.org/xmlns
 graphml+svg.xsd">
 <key id="k0" for="node">
 <default>
 <svg:svg width="5cm" height="4cm" version="1.1">
 <svg:desc>Default graphical representation for
nodes
 </svg:desc>
 <svg:rect x="0.5cm" y="0.5cm" width="2cm"
height="1cm"/>
 </svg:svg>
 </default>
 </key>
 <key id="k1" for="edge">
 <desc>Graphical representation for edges
 </desc>
 </key>
 <graph edgedefault="directed">
 <node id="n0">
 <data key="k0">
 <svg:svg width="4cm" height="8cm" version="1.1">
 <svg:ellipse cx="2cm" cy="4cm" rx="2cm"
ry="1cm" />
 </svg:svg>
 </data>
 </node>
 <node id="n1" />
 <edge source="n0" target="n1">
 <data key="k1">
 <svg:svg width="12cm" height="4cm" viewBox="0 0
1200 400">
 <svg:line x1="100" y1="300" x2="300" y2="100"

http://graphml.graphdrawing.org/primer/graphml-primer.html (24 of 25)10/04/2005 8:48:59

http://graphml.graphdrawing.org/primer/graphml+svg.xsd
http://graphml.graphdrawing.org/primer/svg.graphml

GraphML Primer

 stroke-width="5" />
 </svg:svg>
 </data>
 </edge>
 </graph>
</graphml>

Note that the node with id n1 admits the default graphical representation given in
key k0. The above example shows also the usefulness of XML Namespaces:
there are two different desc elements - one in the GraphML namespace and
one in the SVG namespace. Possible conflicts, due to elements from different
XML languages that happen to have identical names, are resolved by different
namespaces.

http://graphml.graphdrawing.org/primer/graphml-primer.html (25 of 25)10/04/2005 8:48:59

http://validator.w3.org/check/referer

	graphdrawing.org
	GraphML Primer

