Memory Enhanced Evolutionary Algorithms for Changing Optimization Probl ems

Jurgen Branke
Institute AIFB, University of Karlsruhe
D-76128 Karlsruhe, Germany
Phone: ++49 (721) 6086585 Fax: ++49 (721) 693717
Email: branke@aifb.uni-karlsruhe.de
http://www.aifb.uni-karlsruhe.de/jbr

Abstract- Recently, there has been increased interest in The paper’s outline is as follows: Section 2 thoroughly
evolutionary computation applied to changing optimiza- reviews and classifies relevant literature. The next two sec-
tion problems. This paper surveys a number of ap- tions discuss a number of design decisions related to the use
proaches that extend the evolutionary algorithm with of a memory and motivate our approach. Then, in Section
implicit or explicit memory, suggests a new benchmark 5, a new benchmark problem is defined that is simple, but
problem and examines under which circumstances a relates better to the interesting properties of real-world dy-
memory may be helpful. From these observations we de- namic environments than previous benchmarks. A number of
rive a new way to explore the benefits of a memory while experimental results are reported in Section 6.
minimizing its negative side effects. The paper concludes with a summary and some sugges-
Keywords: evolutionary algorithm, genetic algorithm, tions for future work.
dynamic, non-stationary, time-varying, memory

2 Memory-based Evolutionary Algorithms:
1 Introduction History

While most of the papers produced in the area of evolutionarp 1 |mplicit Memory

computation deal with optimization in static, non-changing) . . _
environments, many real-world problems are basically dy-An evolutionary algorithm that uses representations contain-

namic: new jobs have to be added to the schedule, machind¥ more information than necessary to define the phenotype
may break down or wear out slowly, raw material is of chang-("e' redundant representations) basically has some memory
ing quality etc. where good (partial) solutions may be stored and reused later

Of course one could deal with this non-stationarity by re-2S necessary. S o
garding each change as the arrival of a new optimization prob- e call this kind of memorymplicit because it is left to
lem that has to be solved from scratch (cf. [15]). However thigh€ EA to find a way to use it appropriately.

simple approach is often impractical, e.g. because solving a 1h€ MOSst prominent approach to redundant representa-
problem from scratch without reusing information from the tions seems to be diploidy. Goldberg and Smith [5, 19] report
past is too time consuming. on experiments with using diploidy and dominance. Since

Fortunately, unless the change in the problem is extremell} i not clear beforehand which allele value (e.g. 0 or 1)
strong, probably much effort could be saved and better solughould be dominant at a particular gene position, Goldberg
tion quality achieved by using an optimization algorithm that@"d Smith favor a t”a"?“f fcheme_ whe”re an ?Ilele_can tayl’<e
is capable of continuously adapting the solution to achanginqn one of three values “0”, “recessive 1", and “dominant 1".
environment, reusing the information gained in the past. Evol €sted on a time-varying knapsack problem, they report bet-
lutionary algorithms (EAs) seem to be a suitable candidatel®" @daptive qualities than with a simple GA. -
and subsequently the interest in EAs for dynamic problems However, this approach has been reviewed critically by
has been rising in recent years. Ng and Wong in [14]. They argue that the triallelic scheme

A number of authors have addressed the issue of transfels Piased and that the reported better performance of the trial-
ring information from the old environment to the new envi- lelic scheme compared to a simple haploid representation is

ronment by enhancing the EA with memory that might al-mainly due to the slower convergence rate of the triallelic GA
low it to store good (possibly partial) solutions and reusehich happens to be suitable in the frequent changes used for

them later as necessary. This memory may be implicit (e.gl€Sting in [5]. In other dynamic environments, so the con-
a diploid genome) or explicit (i.e. an extra storage space wittF!usion, the haploid GA might even outperform the triallelic
explicit rules for storing and retrieving information). scheme. Ng and Wong propose a new diploid scheme with
This paper surveys the memory-based approaches puggur possible alleles (0 and 1, each dominant and recessive).
lished so far, suggests a new benchmark problem, examind® P€ able to adapt to changes quickly, they suggest to use a
the idea of explicit memory more closely, compares SeVer(.i_qjommance change mechanism for which all allele pairs are

storage strategies, and suggests a new way to use the melfverted (i.e. changed from dominant to recessive and vice
ory. versa) whenever an individual's fitness decreases by more

than 20%. In the experiments presented, their diploid scheme

outperforms the haploid as well as the triallelic scheme. deactivate genes at the next lower level, allowing complex
Hadad and Eick [7] use multiploidy and a dominance vec-hierarchically structured genes and more redundant informa-
tor as an additional part of an individual that breaks ties whention than in the diploid scheme. In the experiments on the
ever there is an equal amount of 0's and 1's at a specifitime-varying knapsack problem reported in [3] however, a
gene location. They report on a number of experiments withrelatively simple two-level representation was chosen, where
varying number of gene strings per individual. Also usingthe higher level activated exactly one of four alternative sub-
the time-varying knapsack problem as testbed, they obsenarings, each consisting of a complete solution to the problem.
best performance with diploid or tetraploid individuals, while Nevertheless, improvements over simple GAs were found.
tetraploidy showed a slight advantage at high change frequen- This approach has additionally been tested on a simple
cies. moving parabola, results are reported in [2]. As in the pre-
Ryan [17] uses additive multiploidy, where the genes dewvious paper, a simple two-level structure was used, this time
termining one trait ar@added in order to determine the phe- with the higher level activating only parts of the solution. Per-
notypic trait. The phenotypic trait becomésvhen a cer- formance found was significantly better than with a simple
tain threshold; is exceeded, and isotherwise. In [18] this GA. Whether this approach has a significant advantage com-
paradigm has been extended slightly such that the phenotyppared to multiploidy has yet to be determined.
trait becomed when a certain threshold is exceeded) if
the value is below a smaller threshalg and is determined 2.2 Explicit memory

at random if the value is betweén andb,. The results are hile redund _ iaht all h .
reported to outperform the methods by Ng and Wong ([17])W, lie redun ant represe_ntanons_mlg t a ow the EA _to im-
plicitly store some useful information during the run, it is not

and Osmera ([18]) on several problems. . . ; .
Lewis et al. [9] compared five approaches on the oscilla-c!ear that the algorithm actually uses this memory in an effi-

tory knapsack problem: a simple hypermutation scheme (CI‘.:Ient way. As an alterngt_lve, the km_d of gpproach_e_s n this
[1]), the approach by Ng and Wong [14] with and without the sub_sec'qon use an exp_I|C|t memory in which spe(_:lﬂc infor-
mechanism of dominance change (see above) and the Orid?janon is stored and reintroduced into the population at later
nal approach of Ryan [17] as well as a variant extended with genergtlons. ,
dominance change mechanism. They observed that a simple Louis and Xu [11], for examplg, look at re-scheduling an
dominance scheme is not sufficient to track the optimum re open shop problem after a mach|r_1e has broken down and has
sonably well. If the diploid approaches are extended with een replaced by a faster machme._ Th_e)_/ assume that the
dominance change mechanism, much better results can be O(fp_anges of the problem are known (i.. it is possible to re-

tained. Still however, a simple haploid GA with a hypermuta-aCt explicitly), and the_y use a fi?<ed numbe_r of generatiqns
tion rate similar to the number of bits flipped by a dominancebetwe‘":‘n changes (which is a valid assumption when the time

change performed comparably. Experiments with an enVipetween changes is larger than the time to run the maximum

ronment of two alternating states as well as a larger numbé}u”,'ber of_ger_1e_rat|or_13 for the EA). In th|_s paper, the popula-
of states revealed that the approach by Ng and Wong provetqm s best individual is stored at regular intervals. For exam-
to be able to learn two solutions and switch between thenf <" when the maximum number of generations is 300, every

almost instantaneously, although the best solutions achieve%) generations the best individual is stored, resulting in a to-

for each target were slightly poorer than with the other ap_tal of 6 stored individuals. After a change, the GA is seeded

proaches. If more than two targets were used, the Ng anpartially (5-10%) with i_ndividuals from the old_run (ie. the_
Wong approach failed completely, while the haploid hyper_Iast run before the environment changed), while all other in-
mutation GA performed better than both diploid GAs with dividuals are initialized randomly. The authors report signif-
dominance scheme. It seems that the Ng and Wong approajﬁ?m improvements over a totally random initializati_on, par-
is quite effective at maintaining memory, while the approacht'CUIar_ly |.n_early generations. However, when carrying over
by Ryan, extended with a dominance change mechanian,qore|nd|V|dua_Isfrom the old run (50-100%),_(_3rforproblems
maintains diversity similar to a hypermutation scheme. where the environment changes more significantly (deletion

Given the evidence available so far, it can be assumed thé?[f a job), the method reportedly failed. Further experiments

the multiploid representations may be useful in periodicallyOn the effect of the number and quality of the inserted solu-

changing environments where it is sufficient to remember glons are rep_or_teq in [10]. For example, the authors ob_sgrve
few states and where it is important to be able to return t&hat as the similarity between the problems decreases, inject-

previous states quickly. The applicability to problems without'nd individuals with lower fitness from the old population re-

periodicity and more than a few re-occurring states is at Ieas?u”_S in better SOI_Ut'OnS in the new run. Ir_1 any case, the mem-
questionable. ory in that paper is only used to transfer individuals from one

A quite different redundant representation scheme that iEA run tq seed the initial population after a single change, the
not based on multiploidy but uses a multi-level structuredM€MOrY 1S notgérm?nent. ol based
gene-representation has been suggested by Dasgupta and MC_Ram_sey an E Ar\e ?QStette [1]lincorlp%ratebcase— ased rea-
Gregor [3]. In this representation, each level can activate or°"Ng Info an EA. They use a knowledge base to memo-

rize successful individuals in a permanent memory. The sys-

tem assumes that the environmental conditions can be megeod start is to look at the possible design decisions that have
sured. In regular intervals, the best individual is stored into be made. First of all there is the question of implicit or
the knowledge base and indexed with data characterizing thexplicit memory. We will restrict ourselves to explicit mem-
environment at that time. Whenever a new environment i®ry here, since its effects are easier to understand and since
encountered (the environmental variables changed), the Egiven the evidence so far, it seems questionable whether im-
is restarted. For restart, half of the population is initializedplicit memory is really useful for problems with more than
with individuals from the knowledge base that have beertwo states.

successful in a similar environment. Similarity of environ- After having decided to use an explicit memory, further
ments is calculated by a nearest neighbor analysis. Experguestions arise:

ments proved that the knowledge base allows the EA to build

upon the knowledge gained in the past. Unfortunately this ap- 1. when and which individuals should be stored in the

. . T : memory?
proach is only applicable when the similarity of environments
can be measured. _ _ _ 2. how many individuals should be stored in the memory
Another example is the work by Trojanowski et al. [20] and which should be replaced to make space for new
in which each individual is extended with additional memory individuals?

for a number of its ancestors. After a change in the environ- o .
ment, these older solutions are also re-evaluated and replace 3- Which individuals should be retrieved when from the
the current individual if they outperform it in the new envi- memory and reinserted into the population.?

ronment. Since the memory is limited, this approach may be - Ajthough we will not be able to answer all of these ques-
regarded as an EA with short-term memory that allows to injons here, we will discuss and compare a number of alterna-
crease variability by reintroducing individuals that have beenjyes and try to motivate our choices.
considered good in recent generations. Intuitively, the individuals stored in the memory should be
A more elaborate storage strategy has been added to thg ahove average fitness, not too old, and distributed across
Thermodynamical Genetic Algorithm (TDGA, c.f. [12, 13]). geveral promising areas of the search space.
There, every generation‘s best individual is stored in the Regarding the question which individuals to store in the
memory, and another individual is deleted from the memonfnemory, it seems quite natural to use the best individuals
depending on its age and contribution to the memory populagom time to time. Contrary to this intuition, Louis et al.
tion’s diversity. The individuals from the memory then serve [10] reported that for the case of larger changes, better results
as additional potential candidates in the process of selectingere obtained with storing inferior solutions. This might be
a parent generation (in addition to the usual population). caused by the fact that they used a simple storage scheme,
This is perhaps the most universal approach to permanenioring only a very small number of individuals and keeping
explicit memory and is most closely related to the following | of them. Storing inferior solutions then means maintain-
sections. However, so far it has been defined for binary réPing diversity which is necessary to be able to react to larger
resentation only and has never been evaluated per se. changes. If diversity is considered explicitly when deciding

Together with TDGA it was tested again on the time-yhich individuals to keep, we still think it is sufficient to look
varying knapsack problem where it was able to recall earliegy the pest individuals.

solutions when needed and to adapt to new situations much as replacement strategies, we consider the following al-
faster when they reappeared, even in high frequency changingrnatives:

environments. e Compute an “importance value” for each individual as

linear combination of the individual’s age, its contribu-
3 General Thoughts about Memory tion to diversity and its fitness. Since it seems very dif-
ficult to determine an optimal tradeoff, we don’t think
this approach would be practicable

¢ Delete the individual which, when deleted, retains the
maximum variance in the population, where the vari-
ance is calculated as the sum of the variances of the
alleles over the population (this method with subse-
guently be termedgariance).

Why does the idea of adding a memory to an evolutionary
algorithm (EA) seem to be so appealing that a larger number
of authors have suggested it?

Intuitively, when the optimum reappears at a previous lo-
cation, a memory could remember that location, and instanta-
neously move the population to the new optimum. A memory
could also be useful in maintaining diversity. And it might

guide evolution to promising areas after a re-initialization. m

But while the memory might allow to exploit knowledge V(i) = Z Z (s — @;)°
gained in the past, it might as well mislead evolution and i=1 je P\{i}

prevent it from exploring new regions and discovering new m : length of genotype, P: population
peaks.

When trying to get the most out of an added memory, a ® In order to maintain diversity, a simple crowding strat-
egy may be used, i.e. the new individual replaces

the most similar old individual as long as it is better 5 A New Benchmark Problem

(termedsimilar).))
Benchmarks should be simple, easy to describe, easy to ana-

e Alternatively, we can determine the two individuals . X
. 7 . lyze and also tunable in their parameters. On one hand they
with the minimum distance between each other and re-

S o) should be complex enough to allow conjectures to the real
move the less fit individual. The underlying idea is that g
S . . —.__world, on the other hand they should be simple enough to al-
one individual in a certain area should be sufficient

and if there are two close to each other, only the ﬁtterIow to gain new insights into the working of the optimization

. X algorithm.
should be retained (termedindis). That's why we think that scheduling ([11]) or mouse-

Retrieval should F’mbab'y onl_y happe_n.aft(_er the envir.on_m.enﬁ,acking ([16]), although representative real-world problems,
changed, otherwise the continuous injection of old |nd|V|d—are not the best benchmarks for a research area in such an

uals in the population may be detrimental. We decideq tqszarly stage as EAs for dynamic optimization problems cur-
acknowledge that a change has occurred whenever the f'mer%sntly is
of at least one individual in the memory has changed. Note Other authors have suggested simpler problems, however

that although this method does not guarantee to capture a[p] y seem to be so simple that they are too far away from
changes, it seems a reasonable indicator due to the expec lity

variety in the memory. Whenever we decide to retrieve indi- So far, the majority of authors tested their approach on a

viduals from the memory, we merge the ol_d p_o_pulation and[ime varying knapsack problem [3, 5, 7, 9, 13, 17, 19] where
the memory population and keep the besindividuals as ¢ 5j10wable weight limit changes over time, usually it os-
new population (the memory remains unaffected). cillates between two predefined values. Representation is bi-
nary and invalid individuals are penalized. This problem does
4 The best of two worlds? not seem to be typical since the environment only oscillates
' . . between two static states, in which an explicit memory would
Our f'rSt exp_erlm_ents with memory added _EAS showed _tha[:ertainly outperform all implicit memory strategies. Also, the
the risk to misguide evolution and prevent it from exploring change from a higher to a lower weight limit makes all pre-

new regions of the search space should not be underestlmat%us individuals invalid which basically eradicates the old

The alternative, restarting evolution from scratch When-SOIution and forces the EA to search for a new solution.

ever a change in the environment occurred, W"! Of_ course If a change of the problem results in a totally new, random
have a good chance to find new peaks, however, it will take @nvironment with no connection to the previous environment,

long time to reach that optimum, sudden jumps are ImIOOSS'ﬁothing will beat a simple restart policy, since there is just

ble. no information to transfer from one environment to the next.

b ;he qlléesthr;]therﬁfoae WZS: Eag we have the best fron?’hus, a reasonable benchmark problem should feature “small
oth worlds, without the drawbacks to medium” environmental changes.

Our suggestion is to divide the population into two, a If the environment is unimodal as in [2], the EAs task

merr|10r_y —populauon ak?d ad sezrch -popqtl)?tlcin. The O';)ebasically is to follow the peak as closely as possible. This
population is memory-based and responsible for remembefs certainly interesting to observe and may provide insights

?n_g_g(.)od .Old solutions, maintaining a minimum quality and about EA behavior in dynamic environments. However in
initiating jumps. The other population constantly searche hat kind of environment, possibly a local hillclimber would
for new peaks and is submitting these to the memory, but will,, .o otficient than an EA

not retrieve any information from it. In order to enforce ex- £, 01 the above considerations. we concluded that a suit-

ploration, this seco_nd populgtlon is re-|n|t|aI|_zed at randomable test environment should be multimodal and change
after every change in the environment (see Figure 1).

slightly. Nevertheless, even a slight change might move the

—— —— optimum to a totally different location, namely when the
4opulation 1) ﬂlppglaftionhz\ height of the peaks changes such that a different peak be-
@a fzed after change) comes the maximum peak. Although local hillclimbing might
D often be sufficient after a change, in these cases the EA ba-
store retrieve sically has to “jump”, or cross a valley, to reach the new
store maximum peak. A benchmark problem should simulate both
/””r“‘\ sides of environmental change: sometimes it may be suffi-
\ Memory) cient to adapt the current solution, and sometimes it may be
\\Q»/// necessary to switch to another, previously slightly inferior but

now better solution. Therefore we here propose a new, sim-
Figure 1: Memory based EA with two islands: one to exploitple benchmark problem that tries to bridge the gap between
the memory, the other to explore new regions of the searckiery complex, hard to understand real-world problems and
space. all too simple toy problems. The idea is to have an artifi-

cial multi-dimensional landscape consisting of several peaks,

Xo | Xo | X5 | Xy | X5 (W H For future research, the function could also be made more
peakl| 8.0 | 64.0| 67.0| 55.0| 4.0 | 0.1| 50.0 complex by increasing the number of dimensions or the num-
peak2| 50.0| 13.0| 76.0| 15.0| 7.0 | 0.1 | 50.0 ber of peaks and by overlaying the whole landscape with a
peak3| 9.0 | 19.0| 27.0| 67.0| 24.0| 0.1 | 50.0 high-frequency noise.
peak4| 66.0 | 87.0| 65.0| 19.0| 43.0| 0.1 | 50.0 For this paper, we additionally used a more simple test
peak5| 76.0 | 32.0| 43.0| 54.0| 65.0| 0.1 | 50.0 function especially suited for memory-based EAs. This func-

- tion, G, is a linear combination of two fixed 5-dimensional
Table 1: Initial parameters for all peaks functions with 5 peaks each. The weight of the two func-
tions changes over time, & changes fronmy, to g, to ¢;
where the height, the width and the position of each peak i§tc- In other words, the absolute maximumd@foscillates

altered slightly every time a change in the environment ocPetween two points only, namely the maxima of functigns
curs. andg.. Basically this function relates to the oscillatory knap-

The test function suggested here has 5 dimensions, us€8ck problem that has seen so many successful examples of
real-valued parameters, and has the following form: memory-based EA approaches.

- H;(t)
F(Z,t) = max 5 ‘ cos(2L) +1
S W) 5 (a — X ()2 A = I
The coordinates, the heiglif and the widthi?” of each 5 H;
peak are initialized according to Table 1. Then, evAw (@) = Z 1+W; 25 /(— X;)?
generations the height and width of every peak are changed i=1 i 2aj=1 J
by adding a random Gaussian variable. The location of every . 10 H;
peak is moved by a vectar of fixed lengths in a random 92(7) = Z 5 , 2
S . e 1+ Wiy i (z; — Xj)
direction. Thus the parameteallows to control the severity . ! . J .
of a changeAe will determine the frequency of change. G(t,7) = Mt)g (D) + (1= A(t))g2(Z)
More formally, a change can be described as
6 Experiments
o € N(0,1)
Hi(t) = Hit—1)+T7-0 For our experiments, we used an evolutionary algorithm with
Wit) = Wit—1)+0.01-0 real—vglued encoding, generational repl_gcement but elite of 1,
. . . mutation rate of 0.2, crossover probability of 0.6, one popu-
X(t) = X(t-1)+70 lation and a total population size of 100, including the mem-

ory if used, since all individuals in the memory have to be
] ~_ reevaluated every generation in order to detect changes of the

An example on how the maximum moves over time in ajandscape. Thus in any case, each generation involves 100
two-dimensional space can be seen in Figure 2. evaluations. All reported results are the averages over 20 runs
with different random seed.

Since for dynamic fitness functions it is not useful to re-
port the best solution achieved, we will here report on the
offline-performance, which is the average of the best solu-
tions at each time step, i.e*(T) = # Z;l e; with e} be-
ing the best solution at time(cf. [8]). If several populations
are usedg; is the best individual over all populations. Note
that the number of values that are used for the average grows
with time, thus the curves tend to get smoother and smoother.

If the memory is used, by default the EA is started with an
\ empty memory and writes its best individual into the memory
%o 10 2w w0 s @ 10 @ w o every 10 generations, replacing another individual according

to one of the four strategies described in Section 3. Unless
2_stated otherwise, memory size is 10.
The fitness function changes every 10 generations for
functionG (since this is a gradual change, the maximum peak
switches only every 50 generations), and every 50 generations

Figure 2: The movement of the maximum through a
dimensional subspace over 300 changes, shifting védias
lengths = 0.9

To allow replication, the exact test function is using a sepSor function F* in the way described above.
arate random number generator. The C-code can be down-
loaded from our web-page.

6.1 Oscillating Fitness Function While the increased diversity also helps the simple EA, the

. ositive effect of memory remains or is even increased.
As expected, the EA with memory clearly outperforms thep Y . .
As to the replacement strategies, the approach to maxi-

simple EA onG after a few generations since the memory ... ihe variance in the memoryagiance) performed sig-

allows the EA to return to known peaks. However, when we S
S nificantly worse than replacing the most similaingilar) and
looked at the movement of the best individual through space L / -
o . . replacement of the worse of the two individuals with mini-

we noted that the performance gain is mainly due tagthiek

change from one peak to the exact location of the other, bu'?mrn distancerfindist), which both showed almost identical

S erformance. Therefore, our future experiments are restricted
often the best solution is not found. In other words, after on%) - - .
o.thesimilar andmindist replacement strategies.

reasonable peak has been found for each of the two states of
the fitness landscape, the memory actually inhibits the searc&2 Changing the peak’s location
for new, better peaks.

In our last experiment the test function had the unrealistic

® - property that the locations of the peaks remained the same

throughout the run, only their height changed. With the next
| set of experiments, we want to examine the effect of varying
F T the extent to which the location of the peaks is shifted, on the
[" advantage of memory. This will be tested using functian
'] For s = 0 the peaks still stay at the same place, but as
opposed to functiods the optimum now switches between 5
peaks, and they do not disappear completely before they rise
again.

More or less, the results are similar to those obtained ear-
o_ o lier: the memory-based EAs clearly outperforms the simple

generatons EA, the replacement strategies “most-similar” and “worse of
two individuals with minimum distance” show almost identi-

cal behavior (therefore the second one is omitted in the dia-
gram). The two-island-approach suggested in Section 4 (X2)
clearly outperforms the one population approaches, and also
the approach with three populations and memory (cf. Figure
5). Astonishingly, the approach that performed best on func-
tion G, namely the one that replaced 25 individuals with ran-
dom immigrants, did not perform much better than the simple
GA with memory on this function.

40

offline-performance

Figure 3: Offline performance with and without memory on
the oscillatory function.

56

offline-performance

54 [

52

P1, random25, memory mindist
P3, memory mindist -------

P3, no memory ------ 50 -

P1, random?25, no memory

L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

generations sl

offline-performance

46

Figure 4: Offline performance with and without memory on
the oscillatory function, 3 populations or 25 random immi- wl p3.memry mindst ——
grants. ‘ —

P1, memory
P1, no memory
P1, random2s, memory mindist - -~ -

p L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
generations

This can be alleviated to some extend by enforcing some
diversity in the population, either by using 3 independent popgigyre 5: Offline-Performance of several approaches, no shift
ulations (in which case we allow each population to writeof the peak locations.
into the memory, while retrieving solutions from the mem-
ory is still restricted to one population), or by replacing 25 If the lengths of the shift vector is increased, the main dif-
individuals in every generation by random immigrants (ran-ference is that the three-island approach becomes the best one
domly generated individuals, this is another popular methodcf. Fig. 6). This may be explained by its possibility to main-
to make EAs suitable to changing fitness functions [6]). Astain island populations on up to three different peaks, follow-
can be seen, performance is further increased, this time dueg all three peaks simultaneously when they move, while all
to finding better peaks. other tested approaches can only follow one peak at a time.

2 - benchmark for evolutionary algorithms for dynamic fitness
landscapes. And finally, the idea of explicit memory is exam-

ined more thoroughly, and a new memory based approach,
using a “memory-population” and a “search-population” has
been shown to be at least competitive with standard ap-
proaches.

From our experiments we draw the following conclu-
sions:

o If the optimum repeatedly returns to exact previous lo-
| memory cations, that’s perfect for memory-based EAs since it
. Soomrmmmnes allows them to switch instantaneously. Given the right
e memorization strategy, a large number or re-occurring

Figure 6: Offline-Performance of several approaches, peak peaks may be stored in an explicit memory.)]
locations shifting bys = 0.6. e However, the advantage of a memory quickly di-

minishes when the location of the optimum changes
even slightly, therefore the range of problems where
In general, when the length of the shift vector is in- memory-based approaches promise noteworthy im-

creased, the performance of all approaches decreases (Fig- provements is probably quite small.
ure 7). In particular, the difference between the tested ap-
proaches becomes smaller. Nevertheless, since the standard
deviation of these values is usually very low (around 0.25),
the difference remains significant. Figure 7 shows the offline-
performance after 5000 generations (100 change intervals)
over a range of values far

48 F

offline-performance

P3, memory mindist
X2, memory mindist ------

P1, memory min

m;

¢ If one wants to retrieve good individuals from the mem-
ory, they first have to be stored. In other words, the ba-
sic evolutionary algorithm needs to be able to “switch
peaks” or to maintain diversity if we want to have
memory-individuals on several peaks.

e Using several independent subpopulations allows to
P ———— follow several peaks simultaneously.
P1, memory mindist ----

s 3, memony g | e As replacement strategy for the memory, replacing the

] most similar or replacing the worse of the two indi-

ol] viduals with minimum distance worked better than a
variance maximization scheme.

Problems where a change significantly decreases the
fitness of the old solution are actually easier for EAs,

offiine-performance

L T | since this enforces the search for a new peak
M e T Summarizing our experiences, the application of memory-
o] based EAs seems to be restricted to a small set of problems
P Er e B P where the optimum repeatedly returns to previous locations,

0.8 1 12
shift vector length s

in other cases, diversity-based methods seem to be preferable.

Figure 7: Offline-Performance of several approaches afte}? 2Ny case, some diversity-keeping method should be used in
5000 generations, varying shift length conjunction with the memory. _
For now, many questions remain open worth for future
We also tried to gain even better performance by using §Udy: first of all, some other memory-based approaches al-
larger memory (20 individuals instead of 10) and byintroduc-ready known from the literature, like considering age for

ing 25 random immigrants in every generation. However ndeplacement or storing not the best but inferior individuals
significant improvements could be achieved. " “should be examined under the same framework. For the

new 2-population approach, the distribution of individuals
to “search”-population, “memory”-population, and the ac-
tual memory could probably be optimized, maybe even made
igdaptive, dependent on success history. Currently, we are
ous approaches using implicit or explicit memory in evolu-also investigating the possibility to use more_than one mem-
tionary algorithms applied to dynamic fitness functions. Sec®" population. To study the effec_t of changing the _numbe_r
of peaks or the change frequency is another interesting topic.

ond, it critically observes previous test problems and sug _ ‘ . X
gests a new benchmark problem, aimed at bridging the ga@nd finally, other EA approaches designed for use in dynamic
nvironments should be tested and compared on the bench-

between complex real-world applications and all too sim-
ple toy problems. The suggested benchmark is not Iimite(finark problem presentetd. .)
to memory-based approaches, but might become a standard Acknowledgements: Thanks to Steffen Lammermeier

7 Conclusion

This paper makes three contributions: First, it surveys prev

and Eberhard Minz for interesting discussions and providin@ls] C. Ryan and J. J. Collins. Polygenic inheritance - a didpscheme

some of the code, and to the anonymous reviewers for their

valuable comments.

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

H. G. Cobb. An investigation into the use of hypermutatas an adap-
tive operator in genetic algorithms having continuouisigidependent
nonstationary environments. Technical Report AIC-90;00dval Re-
search Laboratory, Washington, USA, 1990.

D. Dasgupta. Incorporating redudancy and gene aadnatiechanisms
in genetic search. In L. Chambers, edit®ractical Handbook of Ge-
netic Algorithms, volume 2, pages 303—-316. CRC Press, 1995.

D. Dasgupta and D. R. McGregor. Nonstationary functiguiraiza-
tion using the structured genetic algorithm. In R. Manmat B. Man-
derick, editorsParallel Problem Solving from Nature, pages 145-154.
Elsevier Science Publisher, 1992.

A. E. Eiben, T. Back, M. Schoenauer, and H.-P. Schweféitors. Par-
allel Problem Solving from Nature, number 1498 in LNCS. Springer,
1998.

D. E. Goldberg and R. E. Smith. Nonstationary functiortimiza-
tion using genetic algorithms with dominance and diploidg. J. J.
Grefenstette, editoRProceedings of the Second International Confer-
ence on Genetic Algorithms, pages 59-68. Lawrence Erlbaum Asso-
ciates, 1987.

J. J. Grefenstette. Genetic algorithms for changingrenments. In
R. Maenner and B. Manderick, editoRarallel Problem Solving from
Nature 2, pages 137-144. North Holland, 1992.

B. S. Hadad and C. F. Eick. Supporting polyploidy in génetigo-
rithms using dominance vectors.

K. De Jong.An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, Ann Arbor MI, 1975.

J. Lewis, E. Hart, and G. Ritchie. A comparison of domiceamecha-
nisms and simple mutation on non-stationary problems. hefit al.
[4], pages 139-148.

S. J. Louis and J. Johnson. Solving similar problemsigigienetic
algorithms and case-based memory. In T. Back, edRooceedings
of the Seventh International Conference on Genetic Algorithms, pages
283-290. Morgan Kaufmann, 1997.

S. J. Louis and Z. Xu. Genetic algorithms for open shdpedaling
and re-scheduling. In M. E. Cohen and D. L. Hudson, editt3SA
Eleventh International Conference on Computers and their Applica-
tions, pages 99-102, 1996.

N. Mori, S. Imanishi, H. Kita, and Y. Nishikawa. Adaptan to chang-
ing environments by means of the memory based thermodyahgee
netic algorithm. In T. Back, editotnternational Conference on Ge-
netic Algorithms. Morgan Kaufmann Publishers, 1997.

N. Mori, H. Kita, and Y. Nishikawa. Adaptation to a chang envi-
ronment by means of the thermodynamical genetic algorithwiume
1141 ofLNCS pages 513-522. Springer Verlag Berlin, 1996.

K. P. Ng and K. C. Wong. A new diploid scheme and dominance
change mechanism for non-stationary function optimizatitn Pro-
ceedings of the Sxth International Conference on Genetic Algorithms,
pages 159-166. Morgan Kaufmann, 1995.

N. Raman and F. B. Talbot. The job shop tardiness problarde-
composition approach.European Journal of Operational Research,
69:187-199, 1993.

C.L.Ramsey and J. J. Grefenstette. Case-basedimdtiah of genetic
algorithms. In S. Forrest, editoFifth International Conference on
Genetic Algorithms, pages 84-91. Morgan Kaufmann, 1993.

C. Ryan. Diploidy without dominance. In J. T. Alandediter, Third
Nordic Workshop on Genetic Algorithms, pages 63—70, 1997.

that can outperform diploidy. In Eiben et al. [4], pages 178~

R. E. Smith. Diploid genetic algorithms for search imé varying
environments. IrProceedings of the Annual Southeast Regional Con-
ference of the ACM, pages 175-179, New York, 1987.

K. Trojanowski, Z. Michalewicz, and Jing Xiao. Addingemory to
the evolutionary planner/navigator. IBEE Intl. Conference on Evo-
|utionary Computation, pages 483487, 1997.

