Parsimony Measures in Multi-objective Genetic Programming
for Symbolic Regression

Bogdan Burlacu
Josef Ressel Centre for Symbolic Regression
Heuristic and Evolutionary Algorithms Laboratory
University of Applied Sciences Upper Austria
Hagenberg, Austria
bogdan.burlacu@th-hagenberg.at

Michael Kommenda
Josef Ressel Centre for Symbolic Regression
Heuristic and Evolutionary Algorithms Laboratory
University of Applied Sciences Upper Austria
Hagenberg, Austria
michael. kommenda@fh-hagenberg.at

ABSTRACT

Symbolic regression (SR) with genetic programming (GP) evolves
models with the explicit goal of minimizing prediction error. How-
ever, practical applications usually require a balance between nu-
merical accuracy and model interpretability. Furthermore, the suc-
cess of this process depends also on implicit, indirect goals such as
model parsimony and population diversity. GP is often extended
with heuristics and techniques aimed at reducing bloat, improv-
ing diversity at the semantic or structural level, and preventing
premature convergence to local optima.

We investigate in this paper the suitability of multi-objective
algorithms for SR, where desired properties of parsimony and di-
versity are explicitly stated as optimization goals. We use two
established multi-objective approaches, namely the NSGA-II and
MOEA/D algorithms, and evaluate different secondary objectives
such as length, complexity and diversity. We use two- and three-
objective combinations on a selection of regression benchmark
problems and compare the results with standard GP used as a base-
line method.

We conclude based on empirical testing that multi-objective SR
represents a viable and effective approach for obtaining models
with improved accuracy and generalization ability. Our results show
that explicit pursuit of diversity provides substantial benefits to the
search process. Multi-objective configurations combining diversity
and parsimony objectives provide the best balance of numerical
accuracy and model parsimony, allowing practitioners to select
suitable models from a diverse set of solutions on the Pareto front.
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1 INTRODUCTION
1.1 Symbolic Regression

Symbolic regression (SR) is a grey-box modeling technique where
an appropriate mathematical structure of the regression model is
found by exploring the space of all possible expressions, usually
by employing genetic programming to evolve an initially-random
population of expression tree solution candidates.

Since the model structure is derived from data, SR typically tends
to produce large, complex models that are not easily-interpretable
and prone to overfitting and poor prediction performance on unseen
data. For this reason practitioners often have to accept a compro-
mise between accuracy and complexity.

Methods to control complexity are connected with aspects of GP
evolutionary dynamics such as loss of diversity, gradual increase
in tree size, occurrence of bloat and introns. These phenomena do
not occur individually but rather share a common set of facilitating
conditions. The main cause for size increase is considered to be
fitness-based selection [17]. Besides a detrimental effect on model
quality and interpretability, bloat also increases the computational
complexity of fitness evaluation, further slowing down the search.
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Basic approaches to control tree size include static tree depth and
length limits [16], dynamic limits [23], parsimony pressure [19, 21],
or fixed length distributions [11]. Their effectiveness depends on
appropriate parameterization by the user, according to the specific
requirements of the problem.

More sophisticated approaches include mechanisms for diversity
control at the phenotypic or genotypic level [3, 5, 6, 25]. Diversity,
particularly at the behavioral (phenotypic) level, is closely tied to
the phenomenon of bloat. Structurally different individuals can
exhibit similar or even identical behavior when the population
accumulates introns (non-functional code fragments in their tree
structure), potentially leading to excessively large models, poor
search performance or overfitting.

In this context, our motivation for this contribution is to explore
new ways of improving the symbolic regression process as a whole
via multi-objective approaches. Model simplicity and interpretabil-
ity are main requirements in industrial applications of symbolic
regression, justifying approaches where these goals are explicitly
stated as optimization objectives.

We follow two promising research directions:

(1) Explore the possibility of using combinations of secondary
objectives (eg., parsimony and diversity) to improve the de-
sired characteristics of models

(2) Explore the effectiveness of different multi-objective opti-
mization paradigms for symbolic regression

The remainder of this paper is organized as follows: Section 1.2
provides an overview of multi-objective genetic programming and
a synthesis of previous work in this area. Section 2 introduces our
proposed methodology and briefly discusses the main features of
the MOEA/D and NSGA-II algorithms. Section 3 describes empir-
ical results and discusses the effectiveness of the proposed multi-
objective approach. Finally, Section 4 summarizes our main results
and suggests potential avenues for future research.

1.2 Multi-objective Genetic Programming

Multi-objective optimization problems (MOP) can be stated as the
simultaneous optimization of a collection of objectives, as follows:

minimize F(x) = (fi(x), ..., fm(x)T .x € Q (1)

where Q is the decision (variable) space, F : QO — R™ consists of m
real-valued objective functions and R is the objective space.

Generally speaking, a non-trivial MOP does not have a solution
that simultaneously optimizes each objective. In such cases when
the objectives contradict each other (are said to be conflicting), the
best trade-offs are identified using the concept of Pareto optimality,
which states that two solutions represent a trade-off if they don’t
dominate each other according to the domination criteria described
by Equation 2. The set of all Pareto optimal solutions is called the
Pareto front (PF).

u,v € R™, u dominatesv & Vi €[1,...,m], u; < v; and

Jjelt,....,m],uj <vj

Since for some MOP the PF might be very large or even infinite,
multi-objective optimization algorithms (MOA) try to find a set of
Pareto optimal solutions that are evenly distributed along the PF
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and are representative of the possible trade-offs. Established multi-
objective evolutionary algorithms (MOEAs) such as NSGA-II [10],
SPEAZ2 [29] or MOEA/D [28] take special care to ensure diversity
of the Pareto front.

Multi-objective GP approaches implement Pareto optimization
techniques to exert more control on the evolutionary process, typ-
ically by employing some form of complexity measure as a sec-
ondary objective. It was shown, however, that explicitly optimizing
for small tree size increases the risk of premature convergence
without appropriate diversity control [8, 9].

Ekart and Nemeth use a Pareto non-domination criterion to shift
the focus of selection towards accurate and small solutions. Their
selection method is able to reduce code growth and processing time
without significant loss of solution accuracy [12].

Bleuler et al. use size as a secondary objective within the SPEA2
algorithm and test their approach against several parsimony-oriented
extensions of standard GP. The multi-objective approach success-
fully manages to produce more compact solutions [1].

de Jong et al. test an MOEA approach called FOCUS (Find Only
and Complete Nondominated Sets) using fitness, size and diver-
sity as objectives. Diversity is measured using a basic tree distance
counting the number of overlapping nodes between two trees. They
find that the diversity objective is essential in obtaining good per-
formance, and that optimizing only for tree size leads to premature
convergence of the algorithm. Overall, the multi-objective approach
outperforms standard GP on the tested problems [9].

de Jong and Pollack further investigate the risk of premature con-
vergence for size-focused multi-objective approaches. They show
that diversity maintenance is required in order to prevent premature
convergence to small trees [8].

Smits and Kotanchek propose a multi-objective GP algorithm
called ParetoGP, using nested tree length (or visitation length) as
a secondary objective to control complexity. They report major
improvements over standard GP in terms of accuracy, robustness
and computational efficiency [24].

Vladislavleva et al. use two different complexity measures within
the ParetoGP framework. The expressional complexity measure
favors compact models, while the order of non-linearity measure
favors models with smoother response surfaces. They report an
increase in the extrapolative capabilities of models generated using
latter secondary objective, although compared to the former, this
objective is less effective in reducing model length [26].

Schmidt and Lipson use age as a secondary objective in their
AFPO (Age-Fitness Pareto Optimization) algorithm, to protect young,
lower-fit individuals from replacement. This causes older, stagnant
individuals that are already stuck to local optima to eventually be
replaced by younger, fitter individuals. They find that while AFPO
gives the overall best performance among all tested algorithms, it
also exhibits a slight tendency towards bloat [22].

Burks and Punch develop a new distance measure based on
the concept of genetic markers and use it to improve population
diversity in a multi-objective setting. They replace individual age
in the default AFPO algorithm with the genetic marker distance
and observe that maintaining genetic diversity is greatly beneficial
for the genetic algorithm [4, 5].

We employ in this work two well-known multi-objective evo-
lutionary algorithms (MOEAs), MOEA/D [28] and NSGA-II [10].
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The motivation for this comparison is to investigate how the two
different paradigms — decomposition-based and domination-based
- interact with symbolic regression. So far, all multi-objective meth-
ods in the area of GP have relied on the domination-based frame-
work, where all objectives are optimized simultaneously. Here, the
Pareto dominance principle plays a key role in the convergence
of the algorithm. However, Pareto dominance can show its limita-
tions when the number of objectives increases, due to most of the
solutions in the population becoming non-dominated with one an-
other, reducing selection pressure and hampering the evolutionary
process [14].

The decomposition approach uses scalarizing functions to trans-
form a MOP into single-objective optimization subproblems. A
scalarizing function (also known as utility function or aggregation
function) transforms a vector in objective space into a real value
using a predefined weight vector. MOEAs based on decomposition
perform selection based on the scalar aggregated fitness values of
solutions.

2 METHODOLOGY

We employ the NSGA-II and MOEA/D algorithms together with
a set of parsimony and diversity objectives. The algorithms dif-
fer from one another in the basic concept they employ for the
search of Pareto optimal solutions. The MOEA/D algorithm uses
a decomposition-based approach to achieve an uniform spread of
solutions across the pareto front, while the NSGA-II algorithm uses
non-dominated sorting and crowding distance-based selection.

The two algorithms are implemented in HeuristicLab, an open-
source framework for metaheuristic optimization [27]. Their re-
spective implementations are adapted to use SR-specific tree re-
combination operators. Both algorithms utilize the same objective
functions and genetic operators and differ only in the specific logic
of their respective main loops.

2.1 MOEA/D

The Multi-objective Evolutionary Algorithm based on Decompo-
sition (MOEA/D) by Zhang and Li [28] decomposes a MOP into
N scalar optimization subproblems, formulated via a scalarization
approach using uniformly distributed weight vectors.

Different decomposition methods are possible; we employ the
Chebyshev approach with objective scaling as suggested in [28],
where the it" subproblem is defined in the form:

. | fi(x) = 2%
minimize g*°"(x|1;, ) = max {/1{ - J (3)

1zj2m Znad _

J J
where z* = (z],.. .,z is the ideal reference point, 2" =
(z?ad, e z‘,}?d)T is the nadir point in objective space and A, . . ., AN

are the weight vectors associated with each subproblem.
z}f=min{fj(x)|x€Q},j=1,...,m 4)
d .

z}la =max {fj(x)lx€Q},j=1...,m (5)
A=A amT >0 (6)

m
ZM:1,W:1,...,N,Vj:1,...,m @
=
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In our experiments we set the reference point to zero (the best
value for each objective). We generate uniformly distributed weight

vectors A; by drawing m independent samples y}, ooyl froma
I'(1) distribution and setting
iYL
A= - j=1,....,m (8)

The MOEA/D algorithm main loop is the original one from [28],
where the reproduction step is realized by subtree crossover, fol-
lowed by mutation.

2.2 NSGA-II

The NSGA-II algorithm [10] uses the crowding distance between
ranked non-dominated solutions to guide selection towards a uni-
formly spread PF. It employs elitism by filling a new population each
generation with the best solutions from both parent individuals
and generated offspring.

However, the discrete nature of parsimony-focused measures
for symbolic regression may impact the effectiveness of the NSGA-
IT algorithm for symbolic regression. In its default implementa-
tion, NSGA-II treats solutions with equal objective values as non-
dominated. For example, tree length as a secondary objective may
cause overcrowding of the PF with single-node non-dominated
individuals that always have constant objective values. Another
potential issue stems from the floating-point representation of the
main objective value (usually an error or correlation measure),
when many individuals of similar quality (up to many decimal
places) and varying complexity artificially enlarge the pareto front.
A potential fix for this issue is rounding the objective value to a
fixed number of decimal places [15].

To avoid the issues described above, we adopt the NSGA-II al-
gorithm with the adaptations for symbolic regression proposed
by Kommenda et al. [15].

2.3 Objective Functions

Typical parsimony measures for GP include tree length and com-
plexity. These objectives are intended to complement the usual
fitness measure and help the algorithm to:

¢ Evolve solutions faster by not having to process overly-large
trees

o Increase solution parsimony, leading to better interpretabil-
ity and lower risk of overfitting

We include in our testing a collection of three parsimony mea-
sures (tree length, tree visitation length, tree complexity) and com-
bine them with a distance-based diversity measure.

2.3.1 Tree Size. We test two basic parsimony-oriented objec-
tives, namely the tree length and the tree visitation length by Smits
and Kotanchek [24], introduced as a way to simultaneously favor
smaller, flatter, and more balanced structures.
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Tree visitation length is defined as the sum of the lengths of all
subtrees inside a tree.

Length(T) = Z 1 ©)
sesT

VisitationLength(T) = Z Length(s) (10)
sesT

where s € T defines the subtree relation and returns all subtrees s
of tree T.

2.3.2  Tree Complexity. We use the recursive complexity mea-
sure by Kommenda et al. [15], abbreviated here as Cxty. This mea-
sure aims to produce simpler expressions by penalizing nesting of
symbols inside the tree structure, as well as non-linear symbols. A
sought effect is to push less complex functions towards the leaves
of the tree and more complex ones towards the tree root.

1 if sym(n) = constant
2 if sym(n) = variable
Yice.n Cxty(c) if sym(n) € (+,-)

[Tee.n Cxty(c) +1 if sym(n) € (X, +)

Cxty(n) = (11)

Cxty(n;)? if sym(n) = square
Cxty(n)? if sym(n) = sqrt
2Cxty(m) if sym(n) € (sin, cos, tan)
2Cxty(m1) if sym(n) € (exp, log)

where ¢ €. n defines the child relation and returns all child nodes ¢
of node n, the index n; refers to the i*"* child of node n and sym(n)
returns the symbol of node n.

2.3.3 Tree Similarity. We employ an efficient hash-based tree
similarity measure, where the trees are hashed in a bottom-up
traversal:

e Tree leaves are hashed according to their concrete type, ie.
constants are hashed based on value, variables are hashed
based on variable name and associated weight coefficient.

e Function nodes are hashed according to their symbol and
the hash values of their children.

e Children of commutative symbols are sorted before hash-
ing to ensure correct identification of subtree isomorphisms
during distance calculation.

o Actual hashes are computed as 64-bit unsigned integers us-
ing a simple and efficient hash function'. No hash collisions
were observed in our experiments.

After hashing, subtrees with the same hash value between two
trees will be isomorphic. Tree distance is then defined as the number
of common hash values between trees (equivalent to the number of
common nodes). Inadvertently, our hash-based measure supersedes
the structural diversity measure proposed by Burks and Punch [4],
since node hash values implicitly act as genetic markers.

Similarity is defined as:

2 - TreeDistance(Tq, T2)

TreeSimilarity(Ty, Ty) =
reeSimilarity(Th, T2) = i) + Length(Ty)

http://www.partow.net/programming/hashfunctions/#DJBHashFunction
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Table 1: Two- and three-objective combinations

Two objectives

(Rz, length) (RZ, length, diversity)

(R?, visitation length)  (R?, length, complexity)

(R?, complexity) (R?, visitation length, diversity)

(R?, diversity) (R?, visitation length, complexity)
(R?, complexity, diversity)

Three objectives

Since the resulting mapping of isomorphic subtrees depends
on the results of hashing, and hashing depends on the numerical
coefficients present in the tree, we consider our tree similarity
as a hybrid measure, incorporating both structural and semantic
information. Recent work suggests it may be worthwhile pursuing
hybrid approaches for simultaneously preserving both structural
and behavioral diversity [6].

We define the diversity objective as a minimization measure,
namely to minimize the average similarity between the current
individual and the rest of the population. A detailed analysis of this
new similarity measure is available in Burlacu et al. [7] (preprint).

3 EMPIRICAL STUDY

We include the standard GA as a comparison baseline and test the
MOEA/D and NSGA-II algorithms with different combinations of
secondary objectives as shown in Table 1. We use a set of four
synthetic benchmark problems and two real-world problems for
symbolic regression, as described in Table 2. Each of the resulting
55 configurations was repeated 50 times.

Table 3 shows the algorithm parameterization. We use a high
depth limit to investigate the possible influence of tree shape on
the quality and parsimony of the results. The parameterization of
the MOEA/D and NSGA-II algorithms is discussed below.

MOEA/D Parameters.

Neighbourhood size The size of the neighbourhood to select
mates for recombination from, and to afterwards perform
replacement in.

Neighbourhood selection probability Specifies the proba-
bility that recombination and replacement occur in the cur-
rent subproblem’s neighbourhood. Otherwise they occur at
population level.

Maximum replaced solutions The maximum number of so-
lutions to be replaced by a more fit child solution. A small
number here helps preserve population diversity.

NSGA-II Parameters.

Dominate on equal qualities Eliminates duplicate solutions
(single-node trees that cannot otherwise be dominated) from
the Pareto front

Decimal places Helps avoid overcrowding of the Pareto front
in conjunction with the dominate on equal qualities parame-
ter by eliminating solutions in very close proximity to one
another

Crowded tournament size Tunes selection intensity towards
more diverse (in terms of crowding distance) solutions in
the Pareto front
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3.1 Comparison Methodology

We first compare the algorithms against the baseline GA using
only the R? objective value as a criterion. Then, we compare the
two multi-objective algorithms in terms of their ability to produce
Pareto fronts containing both diverse and numerically accurate
solutions.

We measure multi-objective performance using the hypervol-
ume indicator H [30], a measure of the volume enclosed by a Pareto
front approximation and a reference point. The reference point
must be dominated by every point in the Pareto front. We calculate
hypervolume indicators Hy and Hc in the two-dimensional objec-
tive spaces defined by (quality, length) and (quality, complexity).
The goal is to identify Pareto fronts containing small, simple and
numerically accurate solutions.

To obtain comparable hypervolumes using the point r = [0, 1]
as reference point, both length and complexity are normalized
beforehand:

o Tree length is divided by the maximum value of 50 nodes

e Since tree complexity is unbounded and grows exponen-
tially, we clamp every co value to DOUBLE_MAX and apply a
logarithmic transformation.

The hypervolume calculation steps for each tested multi-objective
configuration are as follows:

(1) Retrieve the Pareto front in the original objective space

(2) Calculate main objective values (Pearson’s R? correlation)
on either training or test data

(3) Calculate the normalized length and complexity values for
each solution in the Pareto front

(4) Construct Pareto fronts in the new (quality, normalized
length) and (quality, normalized complexity) objective spaces
by removing dominated solutions

(5) Calculate the Hy and H¢ hypervolumes for each algorithm
and problem. Since we consider both test and training data,
we obtain four hypervolume indicators in total: Hf |Train,

HLlTest’ HClTrain and HClTest~

3.2 Benchmark Results

Due to the large number of tested configurations we only show
the median R? and aggregated algorithm ranking on the training
and test data in Table 4. Calculated hypervolumes are shown in
Table 5 for the training data and Table 6 on the test data. Table 7
additionally shows aggregated statistics for the Pareto fronts in the
(quality, length) and (quality, complexity) planes, obtained with the
method described in Section 3.1. Detailed results for each algorith-
mic configuration are available online”.

Purely from a performance standpoint, the MOEA/D and NSGA-
IT algorithms are virtually indistinguishable on the tested problems.
The standard GA algorithm ranks behind most multi-objective
configurations in terms of training performance and places last in
the ranking based on generalization capability on test data.

Zhttps://dev.heuristiclab.com/trac.fegi/wiki/AdditionalMaterial#GECCO2019
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Although the relative difference in training R? values between
the baseline approach (standard GA) and the top-ranked multi-
objective approach (MOEA/D visitation length, diversity) is rela-
tively small, the ranking is statistically significant, with a signif-
icance level p = 0.0002 for a one-tailed t-test of the respective
algorithm rankings on each problem.

Our results confirm previous conclusions [4, 5, 8, 9] that diver-
sity plays an important role in the evolutionary process. Algorithm
ranking on both training and test data shows the effectiveness
of parsimony-diversity objective combinations. The pair (visita-
tion length, diversity) seems particularly well-suited for producing
models with good accuracy and generalization capabilities, occu-
pying the first positions in both training and test rankings. This
also indicates that visitation length is a more effective measure for
promoting solution parsimony.

Somewhat surprisingly, the (complexity, visitation length) com-
bination works well for promoting solution generality, placing just
below the diversity combinations in the test ranking (Table 4). This
supports the intuition that small, balanced trees of low complexity
are preferable to avoid overfitting.

We also notice that diversity alone as a secondary objective
tends to overfit the training data, as indicated by the difference
in training and test rankings for the corresponding MOEA/D and
NSGA-II configurations. This tendency towards overfitting appears
to correlate with low hypervolumes of the resulting Pareto fronts,
as shown in Tables 5 and 6, where standalone diversity ranks behind
every other configuration.

The hypervolume indicator shows that combinations of two
secondary objectives tend to produce more diverse Pareto fronts.
Pareto front statistics in Table 7 additionally show that multi-
objective configurations using any one of the parsimony objectives
produce smaller and less complex solutions. By comparison, stan-
dalone similarity as a secondary objective leads to dramatically
increased complexity and a reduced number of non-dominated
solutions in the Pareto front.

The Pareto fronts produced by the MOEA/D and NSGA-II algo-
rithms are comparable in size. MOEA/D tends to produce slightly
larger and more complex solutions in the Pareto front. Average
Pareto front solution complexity suggests that the decomposition
approach does not work very well with the tree complexity mea-
sure. By comparison, the NSGA-II algorithm using tree complexity
is able to produce very simple solutions in the Pareto front.

Overall, our results show that the combination of relevant objec-
tives such as length, complexity and diversity with state-of-the-art
multi-objective algorithms represents a powerful approach for sym-
bolic regression.

We did not include a detailed runtime analysis of the tested
algorithms as several implementation aspects are not yet considered
production-quality. Roughly, the slowest configuration was two
times as slow as the standard GA. NSGA-II configurations using
parsimony as an objective are 10% faster on average than standard
GA, while MOEA/D configurations are between 10% and 40% slower.
From the tested secondary objectives, population diversity is the
slowest, and configurations including it are on average between
40% and 100% slower than standard GP.
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Table 2: Definition of benchmark problems and training and test ranges.

Name

Function

Training Test

34 3x3 + 2x3 + x4
f(X)Z{

—3 4+ 3x5 + 2x¢ + X7

y = f(x)+e~N(0,2)

Breiman-1 [2]
P(x1

P(xm = —=1) = P(xm = 0) = P(xjp = 1) =

Friedman-1 [13] fx)
y

=D =P ==

4x
=011+ ——
1 + ¢—20+(x2—0.5)

=f(x)+e~N(,1)

ifx;=1

otherwise

[SSE=

5000 samples U[0,1] 5000 samples U[0, 1]

,m=2,...,10

+ 3x3 + 2x4 + X5

5000 samples U[0,1] 5000 samples U[0, 1]

X) = sm(rxixg) + X3 — + 10x4 + 5x5
10 si 20 1/2)% + 10x4 + 5

Friedman-2 [13]

y
Poly-10 [20]
Chemical Real-
Housing

=f(x)+e~N(0,1)

f(x) = X1X2 + X3X4 + X5X¢ + X1X7X9 + X3X6X10

world data

Real-world data

5000 samples U[0,1] 5000 samples U[0, 1]

250 samples U[-1, 1]
711 samples
337 samples

250 samples U[-1, 1]
355 samples
169 samples

Table 3: Algorithm configuration

Genetic algorithm

(common for all algorithms)

Function set

Terminal set

Max. tree depth

Max. tree length

Tree initialization
Population size

Max. generations
Crossover probability
Crossover operator
Mutation probability
Mutation operator

Selection operator

Main objective

Binary functions (+, —, X, +)

Trigonometric functions (sin, cos, tan)
Exponential functions (exp, log)

Power functions (square, sqrt)
constant, weight - variable
100 levels

50 nodes

Probabilistic tree creator (PTC2) [18]

1000 individuals

500 generations

100%

Subtree crossover

25%

Change symbol, single-point
remove branch, replace branch
Tournament selector
(tournament size 5)
Maximize the Pearson’s R?
correlation coefficient

MOEA/D

Decomposition method Chebyshev
Neighbourhood size 20
Neighbourhood selection 10%
probability

Max. replaced solutions 2

NSGA-II

Dominate on equal qualities True

Main objective rounding
Selection operator

Selected parents

5 decimal places

Crowded tournament selector
(tournament size 5)

2000

4 CONCLUSION

We explored in this work different combinations of objective func-
tions for multi-objective symbolic regression. Based on previous
research, we selected a number of parsimony measures (tree length,
visitation length and complexity) and combined them with a diver-
sity measure aimed at preventing premature convergence of the
algorithm.

We tested two multi-objective algorithms based on different opti-
mization paradigms: the MOEA/D algorithm using a decomposition-
based approach and the NSGA-II algorithm using a Pareto domination-
based approach. We performed a detailed comparison using the
hypervolume indicator as a performance measure for the generated
Pareto fronts. Our methodology ensured a fair comparison between
all tested configurations by moving Pareto solutions into the same
(quality, length) or (quality, complexity) coordinates.

Our empirical study did not reveal any significant performance
difference between the MOEA/D and NSGA-II algorithms. Both
approaches successfully compare with standard GA in terms of
training and test solution quality.

Empirical results support our original assumption that multiple
secondary objectives can successfully work together towards more
accurate and parsimonious solutions. Successful objective pairs
such as (visitation length, diversity) likely own their success to a
synergistic effect cancelling out their individual weaknesses.

Future directions in this area include empirical validation on a
larger set of benchmarks, investigations of population dynamics
in multi-objective symbolic regression, analysis of runtime per-
formance, and the feasibility of many-objective approaches for
symbolic regression.
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Table 4: Training and test qualities for each problem, expressed as median R?. Rank and Rank represent the average and median
rank calculated using training and test R? (rank on the training data followed by rank on test data inside the parentheses). Table
rows ordered lexicographically based on median and average performance rank on the test data.

Algorithm Secondary objectives Breiman-I Chemical-I ~ Friedman-I ~ Friedman-II Housing Poly-10 Rank  Rank
MOEA-D visitation length, diversity 0.889 0.883 0.797 0.678 0.863 0.863 0.960 0.959 0.862 0.794 0.847 0.819 4(8) 4(4)
NSGA-II visitation length, diversity 0.884 0.878 0.796 0.741 0.863 0.863 0.959 0.958 0.870 0.796 0.858 0.835 4(6) 4 (5)
NSGA-II length, diversity 0.883 0.877 0.796 0.707 0.863 0.863 0.960 0.959 0.864 0.815 0.857 0.840 5(5) 4(5)
NSGA-II complexity, diversity 0.889 0.883 0.796 0.697 0.859 0.860 0.954 0.951 0.858 0.820 0.850 0.826 7 (6) 8(6)
MOEA-D complexity, visitation length  0.883 0.878 0.792 0.690 0.863 0.862 0.958 0.957 0.860 0.805 0.839 0.816 8(7) 9(7)
NSGA-II complexity, visitation length  0.889 0.884 0.785 0.732 0.857 0.859 0.939 0.937 0.854 0.816 0.814 0.781 11 (8) 12 (8)
MOEA-D visitation length 0.885 0.878 0.791 0.729 0.862 0.862 0.958 0.956 0.866 0.797 0.844 0.803 7(9) 7(9)
NSGA-II diversity 0.870 0.864 0.805 0.688 0.863 0.863 0.956 0.956 0.868 0.797 0.848 0.825 7(10) 5(10)
NSGA-II complexity, length 0.887 0.881 0.788 0.721 0.856 0.856 0.916 0.914 0.855 0.816 0.668 0.622 13(11) 13(10)
NSGA-II complexity 0.888 0.883 0.782 0.697 0.842 0.847 0.893 0.887 0.839 0.821 0.772 0.732 15(11) 17(10)
MOEA-D complexity, diversity 0.869 0.863 0.808 0.684 0.864 0.864 0.959 0.958 0.867 0.805 0.840 0.790 6(10)  4(11)
MOEA-D length, diversity 0.884 0.877 0.777 0.709 0.857 0.859 0.933 0.930 0.854 0.793 0.833 0.806 13(11) 13(12)
MOEA-D complexity 0.812 0.809 0.794 0.685 0.861 0.861 0.944 0.941 0.851 0.809 0.634 0.521 13(12) 12(12)
MOEA-D diversity 0.871 0.864 0.802 0.669 0.864 0.864 0.958 0.956 0.871 0.799 0.830 0.797 6(11) 5(12)
MOEA-D length 0.882 0.876 0.778 0.683 0.859 0.860 0.927 0.923 0.848 0.807 0.839 0.817 14(11) 14(12)
NSGA-II visitation length 0.882 0.878 0.783 0.692 0.859 0.859 0.898 0.893 0.850 0.804 0.622 0.519 14(13) 14(13)
NSGA-II length 0.881 0.876 0.779 0.684 0.858 0.859 0.926 0.924 0.849 0.805 0.607 0.468 15(14) 15(14)
MOEA-D complexity, length 0.879 0.874 0.774 0.675 0.859 0.860 0.921 0.917 0.849 0.801 0.740 0.677 16 (14) 15(14)
Standard GA N/A 0.846 0.841 0.784 0.669 0.859 0.859 0.947 0.946 0.848 0.803 0.604 0.499 15(16) 15(18)

Table 5: Training data hypervolumes H, (quality, normalized length) and Hc¢ (quality, normalized complexity) median values (over

50 repetitions) for each problem. Ranking on each problem is calculated based on average hypervolume H = @ Rank and

Rank represent the average and median rank over all problems, respectively. Table rows ordered lexicographically based on
median and average hypervolume rank.

Algorithm  Secondary objectives Breiman-I Chemical-I Friedman-I ~ Friedman-II Housing Poly-10 Rank Rank
H  He H He H. He H He H He H He
MOEA-D  visitation length, diversity 0.703 0.885 0.634 0.789 0.706 0.856 0.775 0.951 0.708 0.832 0.628 0.835 2.7 2.0
NSGA-II complexity, diversity 0.700 0.886 0.631 0.793 0.700 0.854 0.748 0.949 0.700 0.854 0.629 0.845 33 3.5
NSGA-II visitation length, diversity 0.705 0.873 0.637 0.782 0.707 0.853 0.775 0.949 0.711 0.820 0.636 0.836 3.8 3.5
MOEA-D complexity, visitation length  0.697 0.876 0.632 0.783 0.703 0.854 0.771 0.947 0.704 0.838 0.623 0.830 5.7 5.5
MOEA-D  visitation length 0.691 0877 0.629 0.782 0.702 0.854 0.770 0.949 0.705 0.828 0.625 0.833 6.5 5.5
NSGA-II complexity, visitation length  0.704 0.886 0.632 0.783 0.701 0.852 0.739 0.928 0.704 0.851 0.607 0.810 5.7 6.5
NSGA-II complexity, length 0.703 0.884 0.636 0.786 0.701 0.851 0.735 0.913 0.704 0.852 0.481 0.648 6.7 6.5
NSGA-II length, diversity 0.702 0.859 0.635 0.779 0.708 0.845 0.776 0.951 0.710 0.816 0.637 0.832 7.7 7.5
MOEA-D length, diversity 0.701 0.876 0.628 0.772 0.701 0.849 0.742 0919 0.703 0.826 0.624 0.822 9.2 9.0
NSGA-II visitation length 0.700 0.874 0.629 0.777 0.703 0.851 0.721 0.872 0.700 0.829 0.468 0.601 10.7 10.0
MOEA-D  length 0.698 0.876 0.627 0.773 0.700 0.851 0.737 0.903 0.699 0.830 0.625 0.821 10.3 11.0
MOEA-D complexity, length 0.697 0.873 0.627 0.770 0.702 0.853 0.728 0.898 0.701 0.828 0.539 0.724 10.5 11.5
NSGA-II complexity 0.691 0.884 0.631 0.779 0.684 0.834 0.708 0.890 0.691 0.837 0.557 0.768 11.3 11.5
NSGA-II length 0.698 0.869 0.629 0.771 0.702 0.849 0.732 0.887 0.700 0.806 0.462 0.574 13.3 13.0
MOEA-D complexity, diversity 0.630 0.786 0.608 0.780 0.686 0.850 0.734 0.941 0.682 0.793 0.568 0.798 12.7 14.5
MOEA-D complexity 0.559 0.681 0.569 0.762 0.651 0.844 0.662 0.888 0.659 0.795 0.422 0.597 16.0 16.0
MOEA-D diversity 0.511 0.646 0.535 0.768 0.590 0.759 0.623 0.863 0.608 0.733 0.434 0.514 17.0 17.0
NSGA-II diversity 0.562 0.559 0.540 0.641 0.599 0.680 0.647 0.671 0.601 0.692 0.452 0.300 18.0 18.0
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