
www.sciencemag.org/cgi/content/full/324/5923/81/DC1

Supporting Online Material for

Distilling Free-Form Natural Laws from Experimental Data

Michael Schmidt and Hod Lipson*

*To whom correspondence should be addressed. E-mail: hod.lipson@cornell.edu

Published 3 April 2009, Science 324, 81 (2009)

DOI: 10.1126/science.1165893

This PDF file includes:

Materials and Methods
SOM Text
Figs. S1 to S7
Tables S1 to S3
References

Other Supporting Online Material for this manuscript includes the following: (available at
www.sciencemag.org/cgi/content/full/324/5923/81/DC1)

Movie S1
Data Sets S1 to S15 as a zipped archive: invar_datasets.zip

Supporting Online Text

Distilling Freeform Natural Laws
from Experimental Data

Michael Schmidt and Hod Lipson*

Materials and Methods

S1. The Predictive Ability Criterion
To search for potential law equations, we need a method that discriminates trivial

equations, such as coincidental invariants, from equations that represent intrinsic
relationships, such as energy conservation. We define a potential law equation to be
nontrivial if it can predict differential relationships between two or more variables.

One such relationship that is readily quantifiable from both the law equation and
experimental data is the partial derivative between pairs of variables. If our experiments
collect time-series data, we can estimate the partial derivative between any pair of
variables by taking the ratio of their numerical derivatives over time. For example, in a
system with two state-variables x and y:

x dx dy
dt dty

Δ
≈

Δ
 (S1)

We use nonparametric fitting – local polynomial fits (S1) – to estimate the time-
derivatives of each state-variable. In the case where we do not have time-series data, but
instead random point samples, we could alternatively estimate the partial derivatives
directly using two-dimensional non-parametric fitting.

A candidate law equation – an equation we wish to test for triviality – can also derive
the same partial derivatives between variable pairs using basic calculus. We do this by
taking the ratio between partial derivatives of the equation. For example, for an equation
f(x,y) over variables x and y:

x f f
y xy

δ δ δ
δ δδ

= (S2)

We now have two estimates of the partial derivative: one estimated from the data, and
one predicted by the candidate law equation f. To measure how well the equation
predicted this relationship, we take the difference of Eqns. (S1) and (S2) over the dataset.

3

1

1 log 1
N

i i

i i i

x xabs
N y y

δ
δ=

⎛ ⎞⎛ ⎞Δ
− + −⎜ ⎟⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠

∑ (S3)

There are many metrics for combining the residuals – such as squared-error, mean
error, correlation, etc. Here, we chose to use the mean-log-error for numerical reasons.
The magnitude of the partial derivatives can grow large when the denominator
approaches or crosses zero. The mean log-error squashes these high-magnitude residuals,
while not discarding them entirely. In cases where the denominator is precisely zero, we
discard the data sample. By convention, we measure the negative mean-log-error to
define a maximization criterion.

S2. Calculating the Predictive Ability
Here we detail the predictive ability calculation in greater generality. While Eqns.

(S2) and (S3) work for 2-dimensional systems using only numerical approximations, we
need to consider symbolic relationships for higher order systems.

Specifically, we need to handle the case where one variable is dependent on another
in order to calculate partial derivatives in Eq. (S3) correctly. Consider calculating δx/δy in
a 3-dimensional system with variables x, y, and z. When taking the partial derivative of
f(x,y,z) , we can’t assume variable independence in general. Therefore, we need to
perform a symbolic derivative.

For example, consider the equation of a sphere: f(x,y,z) = x2 + y2 + z2. When
calculating δf/δx, we must consider y and z being dependent on x or vice-versa. Using the
chain-rule, the symbolic derivative is thus:

2 2 2 2 2 2y zx y z x y z
x x x
δ δ δ
δ δ δ

⎡ ⎤+ + = + +⎣ ⎦ (S4)

In order to evaluate δf/δx we need to fill in the partial derivatives on the right-hand-
side of Eq. (S4). We have already approximated these values from the data in Eq. (S1).
Therefore, we can re-write Eq. (S4) as:

2 2 2 2 2 2y zx y z x y z
x x x
δ
δ

Δ Δ⎡ ⎤+ + ≈ + +⎣ ⎦ Δ Δ
 (S5)

In general however, we should not assume that every variable is interdependent on all
others – only a subset. For example in a 3-dimensional system, we only need to assume
one pair of dependent variables; and in a 4-dimensional system, two pairs. So, continuing
this example of the sphere equation, we have either:

2 2 2 2 2 yx y z x y
x x
δ
δ

Δ⎡ ⎤+ + ≈ +⎣ ⎦ Δ
 (S6)

or

2 2 2 2 2 zx y z x z
x x
δ
δ

Δ⎡ ⎤+ + ≈ +⎣ ⎦ Δ
 (S7)

4

For the general case, we can pick either case Eq. (S6) or Eq. (S7) for our calculation
of Eq. (S2). We call this choice the variable pairing – which variables we assume are
interdependent. We now refine Eq. (S3) – the measure of predictive ability – to
incorporate the variable pairing:

1

1min log 1
N

i i

pairing i i i pairing

x xabs
N y y

δ
δ=

⎧ ⎫⎛ ⎞⎛ ⎞Δ⎪ ⎪⎜ ⎜ ⎟− + −⎨ ⎬⎜ ⎟⎜ Δ⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
∑ ⎟

⎟
 (S8)

We could optionally measure error using all possible pairings. However, we have
found empirically that taking the worst-case pairing, as in Eq. (S8), provides the best
results for our computational law equation search.

One final adjustment we can make to the partial derivative pair metric is the sign of
the of the Δx/Δy and δx/δy terms in Eq. (S8). The partial derivative pairs define a cloud of
line segments in phase space, therefore we are only interested in matching the line but not
necessarily the direction of the line. Negating the Δx/Δy term or taking the absolute value
of both can affect the signs of terms in the optimal law equation (for example, sign
differences between Lagrangian and Hamiltonian equations).

S3. Example Partial Derivative Pairs
Here we provide an example calculation of a partial derivative pair for the double-

pendulum Hamiltonian. This example is for a single pairing, namely assuming θ1 and θ2
are interdependent. The Hamiltonian for the double pendulum (with coefficients
removed) is:

()2 2
1 2 1 2 1 2 1cos cos cosf 2ω ω ωω θ θ θ θ= + + − − −

We first take partial derivatives of f with respect to two variables (θ1 and θ2) as in Eq.
(S5), substituting estimated partial derivatives on the right-hand-side with those from the
data as in Eq. (S1):

() 2 2
1 2 1 2 1 2

1 1

sin 1 sin sinf θ θδ

1

ωω θ θ θ
δθ θ θ

⎛ ⎞Δ Δ
= − − ⋅ − + +⎜ ⎟Δ Δ⎝ ⎠

θ

() 1 1
1 2 1 2 1 2

2 2 2

sin 1 sin sinf θ θδ ωω θ θ θ
δθ θ θ

⎛ ⎞Δ Δ
= − − ⋅ − + +⎜ ⎟Δ Δ⎝ ⎠

θ

We calculate the partial derivative pair by taking the quotient as in Eq. (S2):

()

()

1 1
1 2 1 2 1 2

2 21 2

2 2 2
1 2 1 2 1 2

1 1 1

sin 1 sin sin

sin 1 sin sin

f

f

θ θδ ωω θ θ θ
θ θδθ δθ

δδθ θ θ

θ

ωω θ θ θδθ θ θ

⎛ ⎞Δ Δ
− − ⋅ − + +⎜ ⎟Δ Δ⎝ ⎠= ≈

⎛ ⎞Δ Δ
− − ⋅ − + +⎜ ⎟Δ Δ⎝ ⎠

θ

We can now estimate the partial derivative pair numerically using this expression by
filling in the symbolic variables with values from the experimental data. To see why this

5

expression is indeed the correct partial derivative, we can simplify it further symbolically
by factoring out 1/δθ2 from the numerator and 1/δθ2 from the denominator:

() ()
() ()

1 2 1 2 1 2 1 1 2 21 2

2 1 1 2 1 2 1 2 1 1 2

sin sin sin1
1/ sin sin sin 2

ωω θ θ θ θ θ θ θδθ θ θ
δθ θ ωω θ θ θ θ θ θ θ

− − ⋅ Δ − Δ + Δ + ΔΔ
≈ ⋅

Δ − − ⋅ Δ − Δ + Δ + Δ θ

Cancelling the right most factor, this simplifies further to:

1 1

2 2

δθ θ
δθ θ

Δ
≈
Δ

So, the partial derivative ratio resolves numerically to our estimated partial derivative
pair from the experimental data, relating Eqns. (S1) and (S2).

We can perform similar derivations for other pairs of variables and different choices
of dependent pairs. Some partial derivative pairs produce more interesting symbolic
relationships that are more difficult to simplify. However, we have confirmed them to be
numerically exact.

S4. Searching a Space of Equations
The partial derivative pairs metric, Eqns. (S3) and (S8), effectively defines a

landscape over the space of equations. While the landscape is difficult to visualize due to
its dimensionality and size, it is smoother and more well-defined than one might expect.
Our method uses genetic programming to explore this landscape. In fact, most of the
time, starting from a small number of random initial points in the landscape, this method
can descend to the global optimal equation. We call the paths the algorithm takes to the
final solution its trajectory in equation space.

Symbolic regression (S2) is an established method for searching the space of
expressions computationally by minimizing various error metrics. Both the parameters
and the form of the equation are subject to search. In symbolic regression, many initially
random symbolic equations compete to model experimental data in the most
parsimonious way. It forms new equations by recombining previous equations and
probabilistically varying their sub-expressions. The algorithm retains equations that
model the experimental data well while abandoning unpromising solutions. After an
equation reaches a desired level of accuracy, the algorithm terminates, returning its most
parsimonious equation that is most likely to correspond to the intrinsic mechanisms of the
observed system.

In symbolic regression, the genotype or encoding represents symbolic expressions in
computer memory. Often, the genotype is a binary tree of algebraic operations with
numerical constants and symbolic variables at its leaves (S3, S4). Other encodings
include acyclic graphs (S5) and tree-adjunct grammars (S6). The fitness of a particular
genotype (a candidate equation) is a numerical measure of how well it fits the data, such
as the equation’s correlation or squared-error with respect to the experimental data.

One way to visualize the evolution of the equation genome is to track the ancestors of
the final equation over the running time of the algorithm. Fig. S1 shows the ancestry trees
for the equation of the ellipse. Several initially random equations evolve independently
before coalescing. Predictive ability is initially low and some ancestors parent less
accurate equations that eventually lead toward the exact solution (Fig. S1A). Equation

6

complexity is also initially high on average (Fig. S1B). After several generations
however, the ancestry converges to simple and predictive equations, eventually finding
an equation whose parameters can be tuned to find the exact solution (Fig. S1C).

Time [seconds]

P
re

di
ct

iv
e

A
bi

lit
y

[-l
og

-e
rro

r] A

Time [seconds]

C
om

pl
ex

ity
 [n

od
es

]

B

Complexity [nodes]

P
re

di
ct

iv
e

A
bi

lit
y

[-l
og

-e
rr

or
] C

Fig. S1. Ancestor trajectories in equation space while searching for the equation of an ellipse.
Dots indicate crossover and mutation events while lines represent parameter tuning over time.
(A) Several initially random equations with varying predictive ability evolve independently
before coalescing toward the exact solution over the running time of the algorithm. (B) The
ancestors also vary in equation complexity – measured as the number of nodes in their
expression trees. Initial equations tend to have higher complexity, but simplify over time
toward the exact solution. (C) The same trajectories plotted over predictive ability and
complexity shows the ancestor trajectories converge toward a simple and high predictive ability
neighborhood before finding the correct equation structure whose parameters can be tuned to
the exact solution.

We can also look at an individual trajectory (Fig. S2) to see how the equations vary
during the evolutionary search. The first equation is randomly initialized and has poor
accuracy. Gradually, point mutations vary individual terms in the equation. Crossovers
introduce larger changes, such as adding or replacing terms evolved in other ancestry

7

sequences. In each step, the accuracy improves, until convergence onto the exact ellipse
equation.

Accuracy Equations in Sequence Event
-1.4197 x + x – c3 – y random
-1.41347 x + x + x – c4 – y mutation
-1.41339 x + x + x – sin(c3) – y mutation
-1.13805 x + x + x – sin(y) – (x – x) crossover
-1.08904 (x + x)·x – sin(y) – (x – x) mutation
-1.08574 (x + x)·x – sin(y) – c1 mutation
-1.01841 (x + x)·x – y – c1 mutation
-0.978484 (x + x + x)·x - y – c13 mutation
-0.914336 (x + y – c3)·y + x·x·c15 mutation
-0.303559 (x + y – c4)·y + x·x·c15 mutation
-0.0692607 (x + y – sin(x))·y + x·x·c15 crossover
-0.0140815 (x + y – x)·y + x·x·c15 mutation
-0.0050732 (x + y – x)·y + x·x·c16 mutation
-0.0050732 y·y + c3·x·x mutation

Fig. S2. Sequence of solutions as they evolve to model the equation of an ellipse. This
sequence represents a single trajectory in Fig. S1. Small mutations and crossover events
during the evolutionary search slowly converge this sequence onto the exact equation.

The algorithm’s search over a space of equations for a natural law and building the

Pareto front is a computationally intensive task, possibly requiring several hours or days
of computation. However, the search is readily parallelizable as many candidate functions
need to be evaluated simultaneously. We distributed our computations using the island-
population model (S7, 8) and used a fitness-prediction model (S9) to reduce overall
computational cost and to improve the local search gradient.

In a 32-core implementation, 10 minutes for the pendulum to a day for the double
pendulum. The time for two-dimensional geometric invariants to be found on the Pareto
front during the algorithm’s search was approximately 5 minutes. The single-mass air-
track laws took approximately 10 minutes to appear. The double-mass air-track laws took
approximately one to two hours to appear. The pendulum laws took approximately 15
minutes to appear. And the most challenging, the double-pendulum system, took
approximately one to two days of computation.

8

S5. Finding Symbolic Parameters
The search over equation space produces equations with bulk parameters; however,

we can use a second equation search to identify the fully parameterized equation with
symbolic parameters such as lengths, masses, etc. For example, our method found the
following equation for the double pendulum with bulk parameters:

()2 2
1 1 2 2 3 1 2 1 2 4 1 5 2cos cos cosk k k k kω ω ωω θ θ θ+ + − − − θ

The question is what are the symbolic representations for the ki coefficients? To find
the fully parameterized equation, we simply need data from similar systems but with
different physical configurations and hence varying bulk parameters – for example,
collecting data from several double pendula that have different arm lengths and masses.

One way to help identify the units in a potential law equation is to require the evolved
expressions to be consistent in physical units, and to provide the algorithm with
physically-meaningful building blocks such as the masses and lengths of the system’s
components, while requiring all other constants to remain unit-less. This approach still
does not eliminate completely some fundamental ambiguities.

Alternatively, once we have found the law equation with bulk coefficients, we can
refit it very easily to data from another system that has different parameters. If we do this
on several different system configurations, we can obtain bulk coefficients for each
configuration of the system versus the physical parameters (eg. ki values versus length
and mass values of the collection of systems).

With bulk coefficient values from several systems, we can now find an equation for
each individual coefficient using explicit symbolic regression (eg. find the equation of ki
as a function of the system masses and lengths).

We have done this in silico using 100 simulated double pendula with random masses
and arm lengths. We first collected data from these double pendula by simulating them
numerically and then refitting the coefficients of the double-pendulum law equation for
each. Since the partial derivative pairs metric is scale invariant, we divide out the first
coefficient to put all equation in a normal form. This allows us to compare coefficients
across multiple double pendulum equations. Finally, we use explicit symbolic regression
to find the equation for each coefficient:

k1/k1 = 1

k2/k1 = m2L2
2/(m1L1

2 + m2L1
2)

k3/k1 = 2.00055m2L2/(m1L1 + m2L1)

k4/k1 = 19.6/L1

k5/k1= 19.6·m2L2/(m2L1
2 + m1L1

2)

where m1, L1, m2, and L2 are the masses and lengths of the first and second arms
respectively. The remaining coefficient 19.6 is a multiple of the gravitational acceleration
9.8 m/s (which we do not vary).

By setting k1 = m1L1
2 + m2L1

2, we can finally write out the fully parameterized law
equation for arbitrary double pendula:

9

()2 2 2 2
1 1 2 1 2 2 2 2 1 2 1 2 1 2

1 1 2 1 2 2 2

() 2 cos
19.6 ()cos 19.6 cos

L m m m L m L L
L m m m L

ω ω ωω θ
θ θ

+ + + ⋅ −

− ⋅ + −

θ

Finding explicit equations for the parameters is much simpler than finding law
equations from scratch. Symbolic regression found each coefficient expression in less
than 30 seconds, compared with the tens of hours required to find the original bulk
coefficient equation.

S6. Representing Invariant Equations
The acyclic graph (Fig. S3B) represents symbolic equations and is encoded internally

as floating-point assembly code – a list of floating-point operations and parameter values.
Operations can load an input variable or a parameter value, or perform a floating-point
operation on any previous operation outputs (eg. add, subtract, multiply, sine, or cosine

commands). Each operation represents a leaf or parent node in the acyclic graph. The
graph is rooted by the final operation in the list. Fig. S3A shows a raw encoding of an
example equation.

f(θ,ω) = 4.771·(3.714 – ω2) + cos(θ)
+ (3.714 – ω2)·cos(θ)

(0) <- load [3.714]
(1) <- load [ω]
(2) <- mul (1), (1)
(3) <- sub (0), (2)
(4) <- load [θ]
(6) <- cos (4)
(7) <- mul (3), (6)
(9) <- load [4.771]
(12) <- mul (9), (3)
(13) <- add (12), (6)
(15) <- add (13), (7)

A B
+

x +

–

x

4.771

ω ω

3.714

cos

θ

x

Fig. S3. Two equivalent representations of an example equation f(θ,ω) = 17.719 – 4.771·ω2 +
4.714·cos θ – ω2·cosθ. (A) The algorithm stores and evolves equations represented by a list of
floating point operators over a system’s variables. Each operation can load a variable, load a
parameter, or perform an mathematical operation on any previous operation. Unused lines have
been omitted for clarity. (B) The raw list can be interpreted more intuitively by an acyclic graph
where several sub-trees are reused by multiple terms. Both (A) and (B) represent the same
equation.

We can construct the graph of a list encoding by tracing backward from the last
operation recursively. One notable consequence of this encoding is that some operations
are unconnected in the graph – no operations branching from the output node may
reference certain nodes. In effect, these vestigial sections are free to drift during
regression since they have no impact on the equation (phenotype). These sections are
omitted in Fig. S3A.

We initialize the algorithm with random equations by generating a random list of
floating-point operations, limited to 128 operations. We introduce variation using point
mutation and crossover. A point mutation can randomly change the type of the floating-
point operation (for example, flipping an add operation to a multiply or an add to an

10

system variable), or randomly change the parameter constant associated with that
operation (if it is used). The crossover operation recombines two existing equations to
form a new equation. To perform crossover, we select a random location in the list, and
copy all operation and parameter values to the left of this point from the first parent and
remaining operations and parameters to the right from the second parent.

We limit the size of the equation graph to narrow our search to human-interpretable
equations (equations we could fit on a piece of paper). We allowed a maximum of 128
nodes, each possibly representing five types of mathematical operations, two to four
variables, or a parameter constant. Ignoring the infinite parameter space, we are
effectively searching a space of roughly 10108 parameterized equations.

Results and Analysis

S7. Detecting Laws in Synthetic Systems
In addition to physical laws such as Hamiltonians, Lagrangians, and equations of

motion, the partial derivative pair criterion can also decipher implicit equations and
geometric constraints. Table S1 summarizes the algorithm’s search over time and the
Pareto fronts for several synthetic manifolds and simulated dynamical systems.

Systems with parameter constants tend to exhibit gradual convergence whereas
parameter-less equations converge rapidly at differing times. There is a similar inflection
trend among all the Pareto fronts – an equation with some minimum complexity achieves
very high predictive ability. The inflection of the double linear oscillator is more subtle,
which we suspect is due to the large number of terms and polynomial approximations in
its Hamiltonian equation.

11

Table S1. The predictive ability and Pareto fronts of several synthetic manifolds and
simulated dynamical systems. Error bars denote the standard error of predictive ability

System Predictive Ability Over Time Accuracy/Complexity Pareto Front

Circle:
x2 + y2

Elliptic Curve:
x3 + x – y2

Sphere:
x2 + y2 + z2

Linear Oscillator:
a – 0.1·v + 3·x

Linear Oscillator:
x2 + 0.3·v2

12

Table S1 (cont.) The predictive ability and Pareto fronts of several synthetic manifolds and
simulated dynamical systems. Error bars denote the standard error of predictive ability.

System Predictive Ability Over Time Accuracy/Complexity Pareto Front

Pendulum:
α – 9.8·sin(θ)

Pendulum:
ω2 – 9.8·cos(θ)

Double Linear
Oscillator

x1
2 + (x1 – x2)2 + (1 – x2)2

+ 2·v1
2 + v2

2

Double Pendulum
ω1

2 + 0.5·ω2
2 +

ω1ω2cos(θ1 – θ2) –
19.6cos(θ1) – 9.8cos(θ2)

S8. EquationSpace and Accuracy/Complexity Tradeoff

13

For any finite set of experimental data, there is potentially an infinite set of equations
that maximize any type of error metric. For example, a 1000th order polynomial can
perfectly fit any dataset of 1000 or fewer unique data points. While it is immensely more
difficult to find arbitrarily accurate equations using the partial derivative predictive
ability criterion, it is still important to have some qualitative understanding of what the
domain of equations looks like.

Parsimony [-nodes]

P
re

di
ct

iv
e

A
bi

lit
y

[-l
og

-e
rr

or
]

Fig. S4. The accuracy/complexity pareto front of the double pendulum. The pareto front shows
the tradeoff between equation complexity and its ability to derive accurate partial derivative.
At some minimum complexity (32 nodes), predictive accuracy jumps rapidly. Equations almost
twice as complex improve the accuracy only marginally. These high complexity equations tend
to contain the simpler exact equation, but add many smaller terms to compensate noise. The
parsimonious and accurate equation at the inflection is the Hamiltonian and Lagrangian of the
double pendulum.

14

Consider the relationship between equation complexity and accuracy of fitting the
experimental data. Qualitatively there two extremes: extremely complex equations (eg.
Taylor series, neural networks, and Fourier series) with near perfect accuracy and simple,
single-parameter models with baseline accuracy. The equations in-between these two
extremes are the most challenging to find and identify, and their behavior is more
interesting. Fig. S4 shows the Pareto front of equation accuracy versus equation
complexity for the double-pendulum.

The algorithm may also fail to find interesting relationships, due to either lack of
convergence, inappropriate building blocks, or absence of any governing law. In this
case, the front may be poorly formed with only exceedingly complex solutions reaching
high predictive ability.

At certain minimum complexities, the equation’s predictive ability jumps
dramatically and then plateaus. In other words, there is a relatively simple equation that
captures some intrinsic relationships of the system (but perhaps not perfectly). By
parsimony arguments, we can reason this equation to be a likely governing law candidate.
The equation at the inflection in this example is indeed the conservation of energy
equation (Hamiltonian), supporting this assumption.

Fig. S5. The mean predictive ability on a withheld test set of the best law equations detected
versus the amount of normally distributed noise in the data set for the simulated double linear
oscillator. Error bars show the standard error. The percent noise is the ratio of the standard
deviation of the noise and the standard deviation of the original signal.

15

S9. Impact of Noise
Noise can make inference tasks significantly more difficult. In particular, noise makes

approximating the gradient (numerical derivatives) more difficult because derivatives can
be highly sensitive to noise. We use Loess smoothing (S1) – a non-parametric fitting
method – to remove high frequency noise from the motion tracking system. Loess
smoothing updates each sample in the dataset by fitting a small order polynomial to the
sample and its nearest neighbors.

Other methods, such as filtering and convolution, also reduce high-frequency noise,
but do not readily produce estimates of the signal derivative. Using Loess smoothing, we
obtain the numerical derivatives directly from the smoothing procedure by evaluating the
symbolic derivatives of the local polynomial fits at each data sample.

We have examined the impact of noise on the predictive ability for the double linear
oscillator (Fig. S5). Noise reduces the ability to find accurate law equations substantially,
either simply requiring more time to compute or obscuring the law equation entirely
depending on the noise strength. We measure the noise strength (percent noise) as the
ratio of the standard deviation of the random noise to the standard deviation of the exact
signal.

S10. Building a Physical Alphabet
By searching for physical laws from observational data, the algorithm is learning the

language and rules of physics. One method to compartmentalize knowledge acquired
from different systems is to identify common terms and calculations that pervade
different phenomena. Here we quantify commonalities found among the linear oscillator,
double linear oscillator, pendulum, and double pendulum.

The Pareto front of these systems summarizes several equations that maximize
parsimony and accuracy for deriving dynamical relationships between variables. The
terms in these equations are in this sense useful, and may comprise a common physical
language.

We have decomposed the equations on the Pareto fronts of these systems to look for
common terms by extracting all sub-trees (sub-expressions, and terms) of each equation.
We then count the number of repeated terms. In order to compare terms between different
systems, we only require positions to match other position variables (eg. angles versus
Euclidean positions), velocities with angular velocities, etc. When comparing the double
pendulum terms with double linear oscillator terms, we additionally require the variable
number to match.

Fig. S6 shows the 24 most frequently occurring sub-trees. We can see that single
variable terms dominate in frequency. More interestingly, we next see trigonometric
terms for potential energies and kinetic energy and velocity terms. Following terms
include trignometic terms for gravitational forces, acceleration forces, and spring
potentials.

With this information on useful physical terms, the algorithm could reuse them for
future systems, bootstrapping its knowledge into higher complexity systems. We plan to
explore this possibility further in future work.

16

Term Complexity Frequency Systems
k x2 1 23.578 4
k x1 1 21.6514 4
k v2 1 21.5596 4
k v1 1 19.1743 4

k cos(θ2) 2 6.51376 2
k cos(θ1) 2 6.14679 2

k v2
2 3 5.50459 4

k v1
2 3 4.49541 4

(x1 – x2) 3 4.22018 2
k v1 v2 3 4.0367 2
k a2 1 2.75229 2
k a1 1 2.75229 2
k x2

2 3 1.37615 2
k sin(θ2) 2 1.19266 2
k sin(θ1) 2 1.19266 2
k cos(θ1) 2 0.917431 2
k cos(θ2) 2 0.917431 2

k x1
2 3 0.825688 2

k x1
2 3 0.825688 2

k x1 + k v1 3 0.733945 3
k x2 + k v2 3 0.733945 3
k x1 + k x2 3 0.642202 2

k x1 + k v1 – k a1 5 0.458716 2
k x2 + k v2 – k a2 5 0.458716 2

Term Complexity [nodes]

P
ar

et
o

Fr
eq

ue
nc

y
[%

]

k x1
k x2

k a1
k a2

k cos(θ1)

k cos(θ2)

k v1
k v2

k sin(θ1)
k sin(θ2)

k cos(ω1)
k cos(ω2)

k v1
2

k v2
2

k v1v2

x1 – x2

k x1
2

k x2
2

k x1 + k v1
k x2 + k v2
k x1 + k x2

k x1 + k v1 + k a1
k x2 + k v2 + k a2

Fig. S6. The occurrence of common terms among the pareto fronts of the linear oscillator,
double linear oscillator, pendulum, and double pendulum sorted by frequency of appearance.
Several terms re-emerge between these systems revealing a common physical language for
kinetic and potential energy, trigonometry, sum of forces.

S11. Data Collection and Preprocessing
We used motion tracking cameras and software (Vicon MX) to collect data on

physical systems such as the double-pendulum. We place several infrared markers on the
experimental device, place it into an arbitrary initial condition, and observe its dynamics.

The motion tracking produces time-series data of 3-dimensional Euclidean position
coordinates for each infrared marker. We use many infrared markers in order to minimize
noise and occlusions effects during the tracking. Afterward, we then combine the time-
series of each marker to calculate the essential state-variables of the system – 2-
dimensional coordinates, angles, etc. For example, in the double-pendulum, we project all
3-dimensional tracking points to its principle plane, and then calculate the angle of the
two pendulum arms by taking the arctangent between segments of the infrared markers.

While motion tracking systems have become quite accurate and automated (S10), we
must still handle noise and occlusion in the time-series data. Noise amplifies when the
system experiences high velocities or when the number of cameras that can see a
particular infrared marker changes.

In the double-pendulum, the infrared markers on the second arm become occluded
from nearly all cameras when it passes behind the upper arm. In this case, the motion
tracking produces null position coordinates, which we strip out before processing.
Therefore, some of our time-series data contains gaps.

17

S12. Evolutionary Parameters
We use the fitness prediction symbolic regression algorithm described in (S9, S11,

S12) to search the space of symbolic equations. We use the deterministic crowding
selection method (S13), with 1% mutation probability and 75% crossover probability.
The encoding is an operation list acyclic graph with a maximum of 128 operations/nodes
(S5). Single-point crossover exchanges operations in the operation list at a random split.
The operation set contains addition, subtraction, multiply, sine, and cosine operations.

Genetic programs are readily parallelizable to several computers and server clusters
where available. We distributed the symbolic regression evolution over 8 quad core
computers (32 total cores) using the island distributed computation method (S7, S8). The
island model partitions the population of solutions into separated smaller populations
residing on each computer (or core). We spread a population of 2048 equations over 32
CPU cores; therefore each island population has 64 equations.

The island model populations are faster to evolve because there are fewer individuals
and less work to calculate fitness values per population. However, smaller individual
populations are more prone to drift and saturation of similar solutions. To maintain higher
diversity, we migrated solutions between populations at regular intervals. Every 1,000
generations (averaged over all populations), we randomly shuffle all equations among
random pairs of populations.

The fitness predictor population contains 512 predictors, distributed over 32 cores.
The fitness predictor subset size is 128 indices to the full training data set. Predictors are
also evolved using deterministic crowding, but with 10% mutation and 50% crossover.

We calculate fitness using variations of Eq. (S8), where we modify the signs of partial
derivative pairs using negation or absolute value to vary the types of law equations we
search for. For predicted fitness values, we only calculate Eq. (S8) over the smaller
subset of the fitness predictor rather than the entire data set.

S13. Results with Missing Building Blocks
It is interesting to note that in the absence of appropriate building blocks, the

algorithm develops approximations. For example, eliminating sine and cosine as building
blocks causes the pendulum invariant to be expressed as ω2 + k1θ2 – k1θ4, thereby
exploiting the Taylor series expansion of the cosine function. Eliminating cosine but not
sine drives the algorithm to discover and exploit the equality cos(θ) = sin(θ + π/2) or
more complex equivalences (). Table S2

Table S2. Summary of Detected Approximations with Missing Building Blocks

Building Blocks Detected Pendulum Law Approximation Discovered

*, +, –, cos(), sin() ω2 – 19.6·cos(θ) Exact Solution

*, +, –, sin() ω2 – 19.5999·sin(-1.57079 + θ) Trigonometric identity

*, +, – ω2 + 9.7108·θ 2 – 0.7042·θ 4 Taylor series expansion (4th order)

18

S14. Video
We have created a video that demonstrates the dynamics of the physical systems we

experimented on and visualizes the search over equation-space for detecting physical
laws. Several screenshots of the video (S1) are shown in Fig. S7.

Fig. S7. The supplemental movie shows our experimentation with the double linear oscillator
and double pendulum, visualization equation search, and the exploration of the pareto front.

The single-car air-track is a harmonic oscillator with slight damping from the air and
its two springs. With only minimal noise and damping, it was the simplest physical
system that we examined. Given velocity and position recorded from the pendulum over
30 seconds, the algorithm detected the system’s energy conservation and Lagrangian
equations. Given acceleration data also, it detected the system’s differential equation of
motion corresponding to Newton’s second law.

The double-mass air-track consisted of two coupled harmonic oscillators of different
masses. There was significant noise in this dataset as a result of compression of the
middle spring. The algorithm still detected the Lagrangian and Hamiltonain equations.

The pendulum is a nonlinear oscillator. Given only position data, the algorithm
detected that the device is confined to a circle. Given angular positions, velocities, and
accelerations, it detected energy conservation, the Lagrangian, and the Newtonian
equation of motion. The algorithm also detected several inexact expressions through
small angle approximations – for example using x in place of sin(x) and 1–x2 in place of
cos(x). To detect the complete nonlinear trigonometric terms, the algorithm required data
spanning larger angles (roughly ±40˚).

The double-pendulum is the most complex system we studied. It is a coupled
nonlinear oscillator system that exhibits rich dynamics (S14) and chaos at certain energies
(S15) making it challenging to model (S16, S17). We focused only on detecting its energy
laws by only providing angular positions and velocities. Similar to the single-pendulum,
there are several approximate law equations that mask the identification of its exact laws.

19

Additionally, there is higher measurement noise and dampening errors due to higher
velocities of the second arm. However, these challenges were overcome by balancing
data measured from the double pendulum while operating at its two different regimes –
namely, in-phase and chaotic regimes.

S15. Data Files
All datasets are available in the online supporting material; here we describe their

format and content. A list of these files is shown in Table S3. In the online supporting
material, all datasets are compressed into a single file named “invar_datasets.zip”, for
download.

The dataset files are plain-text files. The first line, lists the variable names delimited
by white-space. Each subsequent line is a data sample with a different number of
columns based on the number of variables. The first column is always a trial number (in
the case that the dataset contains multiple independent trajectories or groups of data
points). The second column is always time (or some other number for ordering in the case
of non-time series). The remaining columns correspond to the variable values of the
variables listed on the first line. Optionally, further columns specify the numerical time
derivatives of each variable.

Table S3. List of Datasets Available in the Online Supporting Material
Filename Points Description

circle_1.txt 360 The unit circle over x, y

sphere_1.txt 2000 The unit sphere over x, y, z

pendulum_a_1.txt 493 Simulated pendulum over θ, ω, α

pendulum_h_1.txt 493 Simulated pendulum over θ, ω

linear_h_1.txt 512 Simulated linear oscillator over x, v, a

linear_a_1.txt 512 Simulated linear oscillator over x, v

double_linear_h_1.txt 821 Simulated double linear oscillator over x1, x2, v1, v2

double_pend_h_1.txt 2516 Simulated double pendulum over θ1, θ2, ω1, ω2

real_linear_a_1.txt 870 Motion-tracked linear oscillator over x, v, a

real_linear_h_1.txt 870 Motion-tracked linear oscillator over x, v

real_pend_circle_1.txt 600 Motion-tracked pendulum over x, y

real_pend_a_1.txt 556 Motion-tracked pendulum over θ, ω, α

real_pend_h_1.txt 556 Motion-tracked pendulum over θ, ω

real_double_linaer_h_1.txt 495 Motion-tracked double linear oscillator over x1, x2, v1, v2

real_double_pend_h_1.txt 1520 Motion-track double pendulum over θ1, θ2, ω1, ω2

20

21

References
S1. W. S. Cleveland and S. J. Devlin, Journal of the American Statistical Association
83, 596 (1988).
S2. J. R. Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection. (MIT Press, Cambridge, MA, USA, 1992).
S3. M. Ben, J. W. Mark and W. B. Geoffrey, in First International Conference on
Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA A.
M. S. Zalzala, Ed. (IEE London, UK, Sheffield, UK, 1995), vol. 414, pp. 487--492.
S4. D. Edwin and B. P. Jordan, in Genetic Programming and Evolvable Machines.
(2003), vol. 4, pp. 211--233.
S5. M. Schmidt and H. Lipson, paper presented at the Proceedings of the Genetic and
Evolutionary Computation Conference, London, 2007.
S6. X. H. Nguyen, R. I. McKay and D. L. Essam, in The Australian Journal of
Intelligent Information Processing Systems. (2001), vol. 7, pp. 114--121.
S7. F. Francisco, S. Giandomenico, T. Marco and V. Leonardo, in Parallel
Metaheuristics A. Enrique, Ed. (Wiley-Interscience, Hoboken, New Jersey, USA, 2005),
pp. 127--153.
S8. G. Christian, P. Marc and D. Marc, in Genetic and Evolutionary Computation
Conference Late Breaking Papers R. Bart, Ed. (Chicago, USA, 2003), pp. 80--87.
S9. M. D. Schmidt and H. Lipson, IEEE Transactions on Evolutionary Computation
12, 736 (Dec, 2008).
S10. W. Greg and F. Eric. (2002), vol. 22, pp. 24-38.
S11. M. D. Schmidt and H. Lipson, paper presented at the Proceedings of the Genetic
and Evolutionary Computation Conference, Late Breaking Paper, 2005.
S12. M. D. Schmidt and H. Lipson, in Genetic Programming Theory and Practice IV
L. R. Rick, S. Terence and W. Bill, Eds. (Springer, Ann Arbor, 2006), vol. 5, pp. -.
S13. S. W. Mahfoud, University of Illinois at Urbana-Champaign (1995).
S14. P. M. Jaeckel, T. , Royal Society of London Proceedings Series A 454, 3257
(1998).
S15. T. Shinbrot, C. Grebogi, J. Wisdom and J. A. Yorke, American Journal of Physics
60, 491 (1992).
S16. Y. Liang and B. Feeny, Nonlinear Dynamics 52, 181 (2008).
S17. W. A. Mor M, Gottlieb O, in Proceedings of The 21st ASME Biennial Conference
on Mechanical Vibration and Noise. (Las Vegas, Nevada, USA, 2007).

	Supporting Online Text
	Distilling Freeform Natural Laws from Experimental Data
	Materials and Methods
	S1. The Predictive Ability Criterion
	S2. Calculating the Predictive Ability
	S3. Example Partial Derivative Pairs
	S4. Searching a Space of Equations
	S5. Finding Symbolic Parameters
	S6. Representing Invariant Equations
	Results and Analysis
	S7. Detecting Laws in Synthetic Systems
	S8. Equation-Space and Accuracy/Complexity Tradeoff
	S9. Impact of Noise
	S10. Building a Physical Alphabet
	S11. Data Collection and Preprocessing
	S12. Evolutionary Parameters
	S13. Results with Missing Building Blocks
	S14. Video
	S15. Data Files
	References

