Changeset 5729 for branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective
- Timestamp:
- 03/17/11 12:25:30 (14 years ago)
- Location:
- branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveTrainingBestSolutionAnalyzer.cs
r5722 r5729 90 90 Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit for the estimated values produced by the symbolic regression model.")); 91 91 Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit for the estimated values produced by the symbolic regression model.")); 92 Parameters.Add(new ValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic regression solution should be linearly scaled.", new BoolValue( false)));92 Parameters.Add(new ValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic regression solution should be linearly scaled.", new BoolValue(true))); 93 93 } 94 94 … … 99 99 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) { 100 100 var model = new SymbolicRegressionModel(bestTree, SymbolicDataAnalysisTreeInterpreter, LowerEstimationLimit.Value, UpperEstimationLimit.Value); 101 return new SymbolicRegressionSolution(model, ProblemData); 101 var solution = new SymbolicRegressionSolution(model, ProblemData); 102 if (ApplyLinearScaling.Value) 103 solution.ScaleModel(); 104 return solution; 102 105 } 103 106 } -
branches/DataAnalysis Refactoring/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveValidationBestSolutionAnalyzer.cs
r5722 r5729 74 74 Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit for the estimated values produced by the symbolic regression model.")); 75 75 Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit for the estimated values produced by the symbolic regression model.")); 76 Parameters.Add(new ValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic regression solution should be linearly scaled.", new BoolValue( false)));76 Parameters.Add(new ValueParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic regression solution should be linearly scaled.", new BoolValue(true))); 77 77 } 78 78 public override IDeepCloneable Clone(Cloner cloner) { … … 82 82 protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality) { 83 83 var model = new SymbolicRegressionModel(bestTree, SymbolicDataAnalysisTreeInterpreter, LowerEstimationLimit.Value, UpperEstimationLimit.Value); 84 return new SymbolicRegressionSolution(model, ProblemData); 84 var solution = new SymbolicRegressionSolution(model, ProblemData); 85 if (ApplyLinearScaling.Value) 86 solution.ScaleModel(); 87 return solution; 85 88 } 86 89 }
Note: See TracChangeset
for help on using the changeset viewer.